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INEQUALITIES FOR ONE-SIDED OPERATORS IN ORLICZ SPACES

SERGIO J. FAVIER AND SONIA E. ACINAS

ABSTRACT. In this paper, we get strong type inequalities for one-sided maximal best ap-
proximation operators .#* which are very related to one-sided Hardy-Littlewood maximal
functions M*. In order to obtain our results, strong and weak type inequalities for M* are
considered.

1. INTRODUCTION

We denote by .# the set of functions ¢ : R — R which are nonnegative, even, nonde-
creasing on [0, ), such that ¢(¢) > 0 for all # > 0, ¢(0+) = 0 and tlgn @(t) = oo.

We say that a nondecreasing function @ : Ry — R satisfies the A, condition, symboli-
cally ¢ € A, if there exists a constant A, > 0 such that ¢(2a) < Ay¢(a) for all a > 0.

An even and convex function ® : R — R such that ®(a) = 0 iff a = 0 is said to be a
Young function. Unless stated otherwise, the Young function @ is the one given by ®(x) =
Jo @(t)dt, where ¢ : R — R is the right-continuous derivative of ®.

If o € .7, we define L?(R") as the class of all Lebesgue measurable functions f defined
on R” such that [, @(¢|f])dx < oo for some ¢ > 0 and where dx denotes the Lebesgue
measure on R”. If ¢ is a Young function, then L?(R") is an Orlicz space (see [12]).

In the case of @ being a Young function such that ® € A, then LP(R") is the space of
all measurable functions f defined on R” such that [, ®(|f]) dx < eo.

Also note that if ® € C' N A, such that ®(2a) < Ap®(a) for all a > 0, then its derivative
function @ satisfies the A, condition and

2
2(0(a) + 0(b)) < 9la-+) < "2 (g(a) + 9(b)) m

for every a,b > 0.

A nondecreasing function ¢ : RJ — R(T satisfies the V; condition, denoted @ € V;, if
there exists a constant A, > 2 such that ¢(2a) > A, (a) foralla > 0.

For f € L} (R"), the classical Hardy-Littlewood maximal function M defined over cubes
0O C R" is given by the formula

M) =sup o [ 170l

For f € L} .(R), the one-sided Hardy-Littlewood maximal functions M and M~ are intro-

loc
duced in [5]] as follows:

1 fxth
M f(x)=sup, [ |f()ldy, withxeR,

and
X

1
M~ f(x) =sup— |f(y)|dy, withxeR.
w0 1 Jx—n
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For the sake of simplicity, in the sequel we write M~ to refer to M or M.

It is well known that M is homogeneous, subadditive, weak type (1,1) and it also satisfies
|M f||e < ||f]|so- The one-sided maximal functions M+ are also homogeneous, subadditive,
weak type (1,1) (see [5]]) and strong type (e0,o0). In addition, M may be defined from the
one-sided maximal functions as follows

M () = max{M* (). M f(2)}. @
In fact,
1 s toL _ i
— [0y S @)+ M () < max{M £ (0.M S ().

Now, taking supremum over all s,z > 0, we have

Mf(x) < max{M~ f(x),M" f(x)}.
On the other hand,

Mp) = swp —— [ ) du sup —— [ |7) du=01" 50

s>0 S+ Jx—s 5>0 8+ Jx—s

Similarly, we have M f(x) > M f(x). Therefore
M(x) > max{M* (), M~ 1)}

In [1] and [6], weak and strong type inequalities for M in Orlicz spaces were obtained.
The one-sided weighted maximal operator on R in L” spaces was studied by Sawyer [13]],
Martin-Reyes, Ortega Salvador and de la Torre [8], and Martin-Reyes [7]. The weighted
Orlicz space case was treated in Ortega Salvador [10] assuming the reflexivity of the space.
Kokilashvili and Krbec in [6]], based on Ortega Salvador [10] and Ortega Salvador and Pick
[[L1]], removed the restriction to reflexive spaces and weakened some hypothesis.

In this paper, we follow the idea of Kokilashvili and Krbec in [6] for one-sided maximal
functions on R without dealing with weight functions. Namely, we specify conditions on
¢ € Z under which the weak type inequalities

e RM= ()00 > A} < s [ plenf (), ®)

and

eR MW > ) < [0 (C”;(’“)) dx, @)

hold for all A > 0 and where f € LllOC (R). We also characterize the strong type inequality

Lo fwydr<c [ glef)ax, ®

forall f € L] .(R).

It is worth mentioning that inequalities (3), (@) and (5) are particular cases of results
given in [6]; however, as we do not deal with weight functions, we include easier proofs.

Then, we get conditions to assure the validity of strong type inequalities like (5)) for one-
sided maximal operators ./ *, related to one-sided best @-approximation by constants to a
function f € L (R).

Last, we get strong type inequalities for lateral maximal operators M[jf related to p-

averages.
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2. WEAK TYPE INEQUALITIES FOR M*

The next concept is introduced in [[6] and we will employ it to set conditions under which
(3) and (@) are valid.

Definition 1. A function ¢ : [0,00) — R is quasiconvex on [0,0) if there exist a convex
function @ and a constant ¢ > 0 such that

o(t) < (1) < co(a),
forallt €[0,00).
2.1. Necessary and sufficient condition. Lemma 1.2.4 in [6]] establishes the equivalence
between the validity of a weak type inequality like (3]) for M over R” and the quasiconvexity
of @. Theorem 2.4.1 in [6] states an analogous equivalence for M* over R employing

weight functions. The next result is a particular case of this theorem; nevertheless, as we
deal without using weights, we include an easier proof.

Theorem 2. Let ¢ € 7. ¢ is quasiconvex if and only if there exists ¢; > 0 such that

o) L o) ©®

{xeR:M"f(x)> A} <

forall A > 0 and for all f € L, (R).

Proof. =) Let ¢ € . be a quasiconvex function. By Lemma 1.2.4 in [6], there exists ¢; > 0
such that

. 1
O [ olerf)ax, ™)

for all A > 0 and for all f € L] .(R). From (2) and the monotonicity of Lebesgue measure,
we have
HxeR:MEf(x) > A} < [{xeR:Mf(x) > A} ®)

Now, by (7) and (8), we get (6).

<) We will prove the statement for M reasoning as in the proof of Theorem 2.4.1 in
[6]. The same argument with a slight modification is also valid for the case of M.

Let a < b < ¢ and assume [, |f(u)|du # 0. If x € (a,b) there exists h > 0 such that
(x,x+h) D (b,c) andx+h =, then h < ¢ —a and

1 ¢ 1 rc¢ 1 [xth
[ lrwldn<s [ir@ldn< s [ @) du

A(ab) (X)

c—a
Therefore, if x € (a,b) then

1o .
— [ Vwldu< b s, ©
On the other hand, if x & (a,b) then
1 c
Han ) —— [ 17(0)|du < 01" f), (10)

as M~ f(x) > 0. Eventually, from (9)) and (T0)),
1

c—a

MY f(x) > X(ap)(*)

Let A = L[| f(u)|du > 0. By (B), there exists ¢; > 0 such that

[l |o (L [rwian) e [ o
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From (9) we have

(b—a) <

9

{xGR:M+f(x)>

1
[l
then there exists ¢; > 0 such that
1 C C
=)o (2 [ 1rwla) <ei [“plefm)drre [ ofest)ax

c—a
for all f € L] .(R) provided that [; | f(u)|du # 0.
Now, let f(x) = f(x) X(p,c)(x), then there exists ¢; > 0 such that

o-ae (2, [ Irwlan) <o [ pasa an

c—a
with f € L] .(R) such that [; | f(u)|du # 0.
In case of [, | f(u)|du = 0, (T1)) holds trivially.
Letc>1and a < b < c such that b—a=c—b. Lett;,t, >0 and 6 € (0,1). We
decompose (b,c) into two disjoint sets F and F’ such that (b,c) = FUF’, |F| = 6(c —D)

and |F'| = (1 —6)(c—b). Let h(x) = 11 xr (x) + t2 (x) for x € (b,c), then
1 ¢ 1
h(x)|dx = =0t 1—-0)n].
—— [ 1)l dx = S l6n +(1- )
Replacing in the left hand side of (IT)), there exists ¢; > 0 such that

(b—a)o [W} <e /bc(p(clh(x))dx: c1(b—a)[(c1t)0 + (1 — 8)p(cit)].

LetO< Ty = %‘ 0<Th= %2 then there exists K, = 2¢; > 0 independent of 77,7, and & such
that

Q0T + (1 - 0)T] < K:[09(K>Ti) + (1 — 0)9(KaT2)]. (12)
Finally, by Lemma 1.1.1 in [6], (T2)) is equivalent to the fact that ¢ is quasiconvex. O

2.2. Sufficient conditions. Next, we set sufficient conditions for (@) to be verified. The
next result is a particular case of Theorem 2.4.2 in [6].

Theorem 3. Let ¢ € 7. If ¢ is quasiconvex, then there exists ¢, > 0 such that
HxeR:MTf(x) > A} < cz/ (0] <62£(x)> dx,
R

forall A >0 and for all f € L\ (R).

loc

Proof. It follows straightforwardly taking p = 0 = g =1 in the proof of Theorem 2.4.2 in
[6]. O

However, the quasiconvexity of ¢ € .# is not a necessary condition for the validity of (&)).
Let ¢(x) = |x|? for p > 1, then ¢ € .# and ¢ is a quasiconvex function on [0,0). By
Theorem [3] there exists ¢; > 0 such that

{xeR: MEf(x) > A} < cz/R(p ("”;”) dx,

forall A > 0 and for all f € L] (R).

Now, let
_ |x|Pif x| > 1
px)=9 1 for p > 1;
|x|7 if x| < 1
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then @ € .# and @(x) > @(x) > 0 for all x € R. Therefore, there exists ¢, > 0 such that

{xeR:M*f(x) > A} gcz/R¢<62£(")> dx,

for all 2 > 0 and for all f € L. (R), although @ is not a quasiconvex function. Hence, the
converse of Theorem [3is not true.

Remark 4. Let ¢, € .# such that ¢(x) < @(x) for all x € R. If ¢ is quasiconvex on [0, o),
then there exists ¢ > 0 such that

e R ()0 > Al <e [ 947 )ax

forall f € L] .(R) and for all A > 0.

Moreover, we determine some characteristics of the class of functions that satisfy (4)).

Theorem 5. Let v € .¥. Assume there exist constants ¢y > 0 and xy > 0 such that y(x) >
c1x for all x > xo and there exists a subinterval (0,x,) C (0,x0) where  is either a convex
function or a concave one. Then there exists a constant ¢ > 0 such that

e R ()00 > Al < [ w(D)ax,

forall f € L. (R) and for all > 0.

loc

Proof. From (2)), the monotonicity of Lebesgue measure and Theorem 5.8 in [1]]. U

Therefore, (@) is valid for all f € L\ (R) and for all A > 0, when ¥ € .# belongs to a
bigger subset than that of quasiconvex functions.

2.3. Necessary condition. We also find a necessary condition for (4) to be satisfied.

Theorem 6. Let ¢ € .7. If there exists ¢ > 0 such that
{x € R: M*f(x) > A} gc/ﬂ@(p(“}”) dx, (13)

forall A > 0 and for all f € L}, (R), then 5 < @(y) forally > c.

Proof. First, we consider the case of M.
LetO < <, [=(1—,1)and f(x) = r200(x). For any x € (0,1) we have M* f(x) >
1 > 0 and then

HxeR:M*'f(x) >0} >1.
Now, with A =¢; and f(x) = r,;(x) in (I3)), there exists ¢ > 0 such that

1< C/R(P(Ctzfll(u))du =cQ (c%) %

Finally, we set y = c:% > ¢, theny < c@(y) forall y > c.
With the aim of obtaining the result for M~, we set I = (0, %) where 0 < 1] <, and we
reason as in the case of M. ]
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3. STRONG TYPE INEQUALITY FOR M*

Theorem 1.2.1 in [6] establishes that the validity of a strong type inequality for M is
equivalent to the fact that the function involved satisfies the V, condition. We obtain an
analogous result for M*.

Theorem 7. Let ¢ € .7. The next statements are equivalent:
i) there exists ¢c; > 0 such that

/(p (M*£( dx<cl/ o(cif(x))dx  forall f € L (R), (14)

ii) the function % is quasiconvex for some oc (0 1)
iii) there exists c3 > 0 such that [ %3 o) gy < ©20(c20) 626 for0 < o < o,

iv) there exists ¢z > 0 such that fort > 0 f’ do(u) § mptM7
v) there exists a > 1 such that

1
— > 0.
o(1) < 5o 9lan, 1>0

Proof. The proof of Theorem 1.2.1 in [6] follows this scheme: i) = iii) = v) = ii) = i)
and iii) <> iv). In the case of M* it is sufficient to obtain i) = iii) and ii) = i) because the
remaining implications are not modified when M is changed by M=, as only properties of
quasiconvex functions are employed.

i) = iii) Let f(x) = X[a)(x). After some calculations (see [4, p. 79]), we have

ba jfx<a
Mf(x)= 1 ifa<x<b
ba it x> b,
boa if x<a 0 ifx<a
M*f(x) = 1 ifa<x<b and M f(x)= 1 ifa<x<b
0 ifx>b b=a if x> b.

Consequently, we can write M f(x) = MfY(_wp)(x) and M~ f(x) = M fX[q.)(x). Then,
iit) follows from i) = iii) of Theorem 1.2.1 in [6].
ii) = i) Due to Theorem 1.2.1 in [6], v) implies that there exists ¢; > 0 such that

[ emrtdx<e [ glefe)dr, forall f € Ly (R), (15)
thus, by (2) and the monotonicity of ¢ we have

| o r)dx < [ p(af(x)dx, forall f € Ll (). (16)
From (I3) and (16), we get the desired inequality (14). O

Remark 8. Item v) in Theorem [7]is equivalent to say that ¢ € V5.

We point out that there exists an alternative way to get the strong type inequality (I4)
applying interpolation techniques.

Theorems and [5| guarantee the existence of classes of functions ¢ € .# that satisty
weak type inequalities like (3)) and (@); in addition, the operators M~ are subadditive and
strong type (e0,00). Then, by application of Theorem 2.4 in [9] or Theorem 5.2 in [1]], we
obtain

/\P(|Mi(f)|)dx§1(/ W(4f)dx, forall fe€Ll.(R),
R R
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and for a family of Young functions P such that V' = v is related to @ € .# and provided
that the function ¢ satisfies additional conditions.

4. ONE-SIDED MAXIMAL OPERATORS .Z*

By 7 we denote the class of all nondecreasing functions ¢ defined for all real number
t > 0 such that ¢(r) > 0 forallz > 0, ¢(0+) = 0 and tli)m @(1) = oo.

Letd € JA N A, be a convex function and let B be a bounded measurable set of R”. The
next definition is introduced in [2].

Definition 9. A real number c is a best ®-approximation of f € L®(B) if and only if

/Bcp(yf(x) —e|)dx < /Bcp(yf(x) —r))dx, forall reR.

With the symbol ue(f)(B) the authors refers to the multivalued operator of all best ap-
proximation constants of the function f € L*(B). It is well known that g (f)(B) is a non
empty set; and, if @ is strictly convex, then Ug(f)(B) has an only one element.

In [2] the definition of ue(f)(B) is extended in a continuous way for functions f € L?(B)
such that ¢ = @' with ® € C' as follows.

Definition 10. Let ® € .9 NA; be a function in C" and assume that ® = ¢. If f € L?(B),
then a constant c is a extended best approximation of f on B if ¢ is a solution of the next
inequalities:

W) [ o) ey [ (i) ~chay

and

b) o(f0)~cldy< [ (f(y)~cl)dy

{f<cinB {f>c}nB
Let fig(f)(B) be the set of all constants c.

In the particular case of B = I (x) where I (x) is a bounded one-sided interval of x € R
with positive Lebesgue measure €, we write u( f)(x) for pe(f)(IF (x)) which is the one-
sided best approximation by constants and we set fi" f(x) for the set flo(f)(IZ (x)) which
is the extended one-sided best approximation by constants.

We define the one-sided maximal operators .#*, associated to one-sided best approxi-
mation by constants, in the following way:

M [(x) = iglg{!fei(X)l Hfe(x) € g (f)(0)}-

Remark 11. Tf f(x) € i (f)(x), there exists c& € fi (| f])(x) such that | £5(x)| < cf.

In fact, since |f| > f > —|f| and the extended one-sided best approximation operator is
a monotonous one (Lemma 12 in [3]), there exist a5, b > 0 with —af € i (—|f])(x) and
bt € i (1) (x) such that —a < £2-(x) < b

However, af € fi2(f])(x) and i — max{az, bt } € i (|f[) (x) because i (1f)(x) is a
closed set (Lemma 11 in [3]). As ¢ > aF,bE, we have .4 f(x) < .#*|f|(x) and we may
assume f > 0.

Now, we reason as in [2]], working on If of R instead of balls centered at x € R” with
radius &, and we get the following result.
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Theorem 12. Let ® € .9 N Ay be a C' convex function and we assume ® = @. Let

f €Ly (R)andwe select f£(x) € iE (f)(x) with x € R and € > 0. Then
P < 5 [ oUre)dy < ColfE). a7
and
1 1
~o(fe () —f)]) < ¢ Jre PUFO) = X))y, (18)

2
being € the Lebesgue measure of the intervals Isi and C = 3/\7‘1’ where Ag is the constant
given by the A, condition on .

Proof. By Remark we can assume f > 0 and then f;"(x) > 0. In effect, by a) in Defini-
tion[10} if ¢ < O

o) —chay=[ o) -xay

<[ (s —xdy=o.
{f<e<0}nIg

As @ is a C! convex function, then @(x) > 0 for x > 0; if ¢ < 0 then f(y) —c > —c > 0,
consequently @(|f(y) —c¢|) > ¢(—c) > 0 and

19)

[ 070 =chav>lo(=ole > 0. @0

From (19) and (20) we obtain a contradiction.
Now, applying () and |IF N {fS < f}| < €, we have

1 AL
¢ ) Pf)dy =52

1
+ = dy.
e, QU

Next, by b) of Definition [10{and if we suppose, without loss of generality, that Ap > v/2,
we get

A2
/i OO~ f () dy+ —Folfe (v)
IE m{fs <f} (21)

2 2
ED <22 [ (e f0)+ )+ o0y + (W) @)
n{fe>f}

From (T) and as f5(x) — f(y) > 0 and f(y) > 0, then
O(fe () = FON +0(f) <20(fe(x) = FO) + £ () = 20(fe" (¥)),

and since [IZ N{fF > f}| < &, we obtain

A2 3A2
)< 22 / 20(f (1)) dy+ 2 p(f£(x)) < 222 (5 (x)).
Fn{fE=f) 2 2
Therefore, there exists C = /;“’ such that
1
- Loy = CoE (). @3)
I;
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On the other hand, applying (1)),

o) = 5 [ oUE )y

AZ 1
<7¢/ () = + dy+ - / E(x))dy. (24
< e Igm{f;>f}[(p(f8 () =) +o(fFO)]dy + zgn{f;gf}"’( fEx)dy. (24)
Now, we apply a) of Definition [10{and we have
A2 2
=

@9 < (v)dy

2¢e
1

e,
€ JIgn{fF<r}

<o [ o) - W) + oUW dy+
= 28 Jgng<n ‘ )

e Ay
/Iein{m}@(f(y) fE@W) dy+ 5L /Isiﬁ{fg>f}¢(f

Q(fe (x))dy

A}
2¢ /zsn{fs>f} PUL

provided that 1 < %. Now, by (1)) we get
2 2

Aé Acp A<I>
® <7 /1§n{f§<f} 2oULN D5 /Igim{fei>f} PUON A== /Ii P

2
because ATCP <Aiand IF =IEn{ff < frulzn{f:> f}.
Then

SO < ¢ [0y 26)

€

where C = % and follows from (23) and (26).

It remains to prove (T8). Note that if £ (x) € i (f)(x), then f(x) — f(x) € pF(f —
f(x))(x). We apply to the function f — f(x) and we obtain

1 1
SOUFED — FD = 5 [, 0(1F0) ~ F@))ay.
I;
which is the inequality that we wished to obtain. U
Next, we get an inequality that allows us to compare M+ with .Z*.

Lemma 1. Let ® € .2 N A, be a C' convex function and let ® = @ be such that
A@(t) < @(Kt) for all t > 0 and some constants K,A > 1. Then there exists C > 0 such
that

20 (oM@ ) < 11w < o oM. @

where M*(f) = supg i |f ()| dy.
e>0
Proof. Let @~! be the generalized inverse of the monotonous function ¢ which is defined
by ¢~ '(s) = sup{t: @(t) < s}, then
t <o Yo(t) forallz>0, (28)

and for every € >0
o '(@(t)—&) <t forallt>0. 29)
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The condition A@(¢) < @(Kt) for all + > 0 and some constants A,K > 1, implies that

@(0+) =0 and (1) — oo as  — oo; therefore, ¢! is a real valued function and ¢! € .7.
From in Theorem T2 we have

<o (§ [ etrona).

and since c
. quo(!f(y)l)dySCMi((P(If!))(X%
then
A (IfD) zigg!f!f(x) <o (M (o(|11))(x)- (30)

Now, by in Theorem [T2]and the monotonicity of ¢ we have

i/} o(If»))dy < Co(|fI(x) < @(A*(|f])(x), foralle >0,

and therefore

M= (@(If1)(x) < Co(A=(If)(x)). 31
As there exist K,A > 1 such that A@(t) < ¢(Kt) forallz >0, then 0 < ¢(r) <A¢(t) < ¢(Kt)
for all + > 0 and consequently 0 < @(Kz) — ¢@(z) for all > 0. Now, from (29) and taking

0<&=¢(Kt)— () forall t > 0, we get
o o) =0 '(p(Kt)—&) <Kt forallt>0. (32)
From (BT)), the fact that ¢! is a nondecreasing function and (32)), we get
(1 -
o (GO ) <o (oL ) < KA. 3
Therefore, from (30) and (33),

2o (eI < a1 < o o).

4.1. Strong type inequalities for .7 *.

Theorem 13. Let ® € .7 N Ay be a C' convex function and let ® = @ be such that

A@(t) < @(Kt) forallt > 0 and for some constants K,A > 1. For a function 6 € N4y, we
have that the function 6 o ¢! satisfies the V, condition if and only if there exists a constant
C independent of f such that

o) ar <€ [ o(Clrto)dx

forall f € L (R).
Proof. <) Suppose that .~ (|f]) verifies

o)) dx <€ [ 0(CIfw)dx

forall f € LIOC(]R)
AsOc.7 N A,, there exists K; > 0 such that
[ oKar=(£D)dx < K [ 6Kl ). (34
forall f € L) (R).
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From ([27), and the fact that M+ is homogeneous, we have
Lo (o (mtatsine) ) as= o (o7 (1= (zot)) ) ) as
< [ kA (1f1) ) (35)
<K [ 0(kilf(x))dx

Since t < @' (¢(¢)) for all t > 0, then K;|f(x)| < ¢~ ' (@(Ki|f(x)])); now, by the mono-
tonicity of 6 and the fact that ¢ € .# N A,, there exists K> > 0 such that

Lol < [ oo™ (o) dxr < [ 600 Kalp(I)dx,  G6)

forall f € L) (R).
Therefore, from (35) and (36), we have
/V/Mi dx<C/l//Cg x))dx, (37)
where y = 009!, g = Lo(|f|) forany f € L] (R) and C = max{K;,K,C}.

As the inequality @ holds for any f € L) (R) being g = £¢(|f]), we choose f =
¢~!(Cg) for any nonnegative function g € L. (R) and, using the fact that ¢(¢~!(¢)) =1¢
provided that t € Im @ U {infIm ¢, supIm ¢}, we obtain

/q/Mi dx<C/l//Cg X)),

for all nonnegative functlons g€ Lloc( ) and where C is independent of g. Now, by Theo-
rem wegety =000 ! €V,

=)Asy =00 (p*l € V,, by Theorem there exists K7 > 0 such that
/ w(M*(g)(x))dx < Ki / w(Kig(x))dx, (38)

for all nonnegative functions g € L}, (R). By (27) we have

M| f]) () < w‘l(CMi(w(\fl))(X)), (39)

and if K, = max{C, K, }, both inequalities hold with K.
Therefore, from (38)), the monotonicity of 8, the homogeneity of M* and (39), we have

[ o (sindr < [ ik (p(lf1)) (o) dx
= [ vt (ke (1£1)) ()
<K /R (K2 o(|f(x)))) dx
< Ks /R (K (| £(x)])) dx

(40)

with K3 = max{Ky,K3}.
Since A(t) < @(Kt) for all £ > 0 and for some A, K > 1, there exists / such that K3 < A/
and, applying the inequality / times, then

K39(x) <Alp(x) <A 'o(Kr) < o(K'r).
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Now
K [ wEsp(f (D) dx < K [ wlo(Kslf(0)]))d
where K; = max{K3,K'}. By we have ¢~ !(¢(t)) < Kt and since 8 o ¢! = y, then
(Wo)(t) = (009 " 0g)(t) < 6(Kr); now
Ks [ w(o(l () dr < Ks [ 0(KKilf(0))dv<C [ 0(€Clf0)dx, @D

being C = max{Ky,KKy}.
Consequently, from and (1)), we get

| ocas(finax=e [ oClfw)dx 0

Remark 14. If ¢ € .7 such that t” < ¢ < Ct” then ©(Kt) > Ag(t) for all # > 0 and for any
K > 1 such that A = %p > 1. In consequence, Theorem (13| allows us to consider ¢ € .%

which is not a strictly increasing function and in this case fiF(f)(x) may have more than
one element.

We also get sufficient conditions to have a strong type inequality for .#* softening the
hypothesis of Theorem[I3]

Theorem 15. Let ® € % N A, be a convex function in C' and let ® = @ such that
Ap(t) < o(Kt) for all t > 0 and for some constants K,A > 1. Then

Lot (rwas<c [ o(clrw)ar

forall f € LY (R) and where the constant C is independent of f.

loc
Proof. With the aim of applying Theorem we need to show ®o @~ ! € V, where
® € . N A, and a proof of this fact is done in [2]]. O

4.2. Operators M. If ®(r) = 17! with p > 0 in (27), there exists a positive constant K
independent of f such that

= (7 W)? < A5 () 00) < RO (1F17) ) “2)

1

LetM[f (f)(x)= (sup 1 S 1 F@)]F dt> = (Mi(|f|f’)(x))1l>. The operators M, are related
e>0

to one-sided p-averages of a function and they are homogeneous like M*.
A useful and particularly simple characterization of strong type inequalities involving
M may be established for this special case employing Theorem

Corollary 16. Let 6 € 7 and p > 0, then there exists K > 0 such that
[ oz (p@)ax <k [ oRIFDax, @3)
forall f € LY (R) if and only if 0(t'/7) € V.

Proof. 1t follows from Theorem |13 with ®(x) = ’[‘;’% because ® € . N A, is a C! convex
1
function such that A@(r) < @(Kt) forall >0 with A > 1, K > A» and where ¢ =®'. [

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014



INEQUALITIES FOR ONE-SIDED OPERATORS IN ORLICZ SPACES 161

Remark 17. 1If holds, then ||M5:(f)|le < C||fllg, where || f||g denotes the Luxemburg

norm of f defined by
HfHe—inf{7L>0:/6(M> dxgl},
R A

being 8 a Young function and f € L (R).

Proof. The statement follows straightforwardly from Remark 2 in [2]]. U
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