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ON THE CONSTRUCTION OF VARIATIONAL INTEGRATORS FOR
OPTIMAL CONTROL OF NONHOLONOMIC MECHANICAL SYSTEMS

LEONARDO COLOMBO, DAVID MARTÍN DE DIEGO, AND MARCELA ZUCCALLI

ABSTRACT. In this paper we derive variational integrators for optimal control problems of
nonholonomic mechanical systems. We rewrite the system as a constrained second-order
variational problem, that is, as a problem where the Lagrangian and constraints are defined
in terms of the position, velocity and the acceleration of the system. Instead of discretizing
directly the equations of motion, we discretize the corresponding Hamilton’s principle of
critical action to derive a geometric integrator. We use the classical Lagrange multipliers
method for constrained problems to derive this numerical scheme. An optimal control
problem of a nonholonomic particle is given to illustrate the contents of the work.

1. INTRODUCTION

Nonholonomic mechanics is a traditional topic in Mathematics and Engineering Sci-
ences, due to its applications in robotics and motion planning, among others. The introduc-
tion of new geometric tools has permitted a fast development in the last years, and nowadays
nonholonomic mechanics is a very active research topic within the area known as Geometric
Mechanics. There is a need to develop adapted numerical methods for this kind of mechan-
ical systems, therefore the discrete versions of nonholonomic mechanics have attracted a
lot attention in recent years [4, 5, 10, 11, 15, 17, 18], in some cases, incorporating the more
sophisticated but natural language of Lie groupoids [13].

Variational integrators are a class of integration methods for Lagrangian systems, where
the integrator is derived from the discretization of Hamilton’s principle of critical action
rather than a direct discretization of the corresponding Euler-Lagrange equations. A sum-
mary of the basic theory is given in Marsden and West [16]. The integrators derived in this
way naturally preserve (or nearly preserve) the quantities that are preserved in the continu-
ous framework, the symplectic form, the total energy and, in presence of symmetries which
are invariant under the discretization process, the linear and/or angular momentum.

The aim of this work is to design a variational integrator to solve an optimal control
problem for a controlled nonholonomic mechanical system. We see that this problem will
be equivalent to solve a discrete higher-order constrained variational problem.

It is well known (see [3]) that a fully actuated optimal control problem is equivalent to
solve an optimization problem for a second-order Lagrangian. If the system is underactu-
ated, that is, the number of control inputs is less than the dimension of the configuration
space; the optimal control problem is equivalent to solving an optimization problem for a
second-order Lagrangian subject to second-order constraints (see [6]).

Discrete Mechanics and Optimal Control (DMOC) is a new research area within Geo-
metric Mechanics started some years ago (see for instance [16, 20] and references therein).
In our paper, we show the application of discrete mechanics and variational integrators to
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optimal control problems of nonholonomic mechanical systems. Moreover the problem,
solved in this way, can be consider as a new application of our recent paper [8].

The structure of this work is the following: In Section 2 we introduce discrete mechanics
and variational integrators for first and second-order systems subject to first and second-
order constraints, respectively. In Section 3 we present the mathematical structure of an
optimal control problem of nonholonomic mechanical systems. We show how to solve this
problem in the continuous case and construct the discrete version of the problem to derive
a variational integrator for this system. Finally we give an illustrative example.

All the manifolds are real, second countable and C∞. The maps and the structures are
assumed to be C∞. Sum over repeated indices is understood.

2. VARIATIONAL INTEGRATORS FOR MECHANICAL SYSTEMS WITH CONSTRAINTS

2.1. Discrete mechanics and variational integrators. Let Q be a n-dimensional differen-
tiable manifold with local coordinates (qi), 1≤ i≤ n, the configuration space of a mechan-
ical system. Denote by T Q its tangent bundle with induced local coordinates (qi, q̇i). Given
a Lagrangian function L : T Q→ R, its Euler-Lagrange equations are

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi = 0, 1≤ i≤ n. (1)

These equations determine a system of implicit second-order differential equations. If we
assume that the Lagrangian is regular, that is, the n×n matrix

(
∂ 2L

∂ q̇i∂ q̇ j

)
is non-degenerate,

the local existence and uniqueness of solutions is guaranteed for initial conditions.
Variational integrators (see [16] for details) are derived from a discrete variational prin-

ciple. These integrators also retain some of the main geometric properties of the continuous
systems, such as simplecticity, momentum conservation (as long as the symmetry survives
the discretization procedure) and a good behavior of the energy associated to the system
(see [12] and references therein). In what follows we introduce the construction of this type
of variational integrators.

A discrete Lagrangian is a differentiable function Ld : Q×Q→ R, which may be con-
sidered as an approximation of the action integral defined by a continuous Lagrangian
L : T Q→ R. That is, given a time step h > 0 small enough,

Ld(q0,q1)≈
∫ h

0
L(q(t), q̇(t)) dt,

where q(t) is the unique solution of the Euler-Lagrange equations for L with boundary
conditions q(0) = q0 and q(h) = q1.

We construct the grid {tk = kh | k = 0, . . . ,N}, with Nh = T and define the discrete path
space Pd(Q) := {qd : {tk}N

k=0 → Q}. We identify a discrete trajectory qd ∈Pd(Q) with
its image qd = {qk}N

k=0, where qk := qd(tk). The discrete action Ad : Pd(Q)→ R along
this sequence is calculated by summing the discrete Lagrangian on each adjacent pair and
defined by

Ad(qd) = Ad(q0, . . . ,qN) :=
N−1

∑
k=0

Ld(qk,qk+1). (2)

We would like to point out that the discrete path space is isomorphic to the smooth prod-
uct manifold which consists on N + 1 copies of Q, the discrete action inherits the smooth-
ness of the discrete Lagrangian and the tangent space Tqd Pd(Q) at qd is the set of maps
vqd : {tk}N

k=0 → T Q such that τQ ◦ vqd = qd which will be denoted by vqd = {(qk,vk)}N
k=0,

where τQ : T Q→ Q is the canonical projection.
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DISCRETE NONHOLONOMIC MECHANICAL CONTROL SYSTEMS 137

We know that for any product manifold Q1×Q2, T ∗(q1,q2)
(Q1×Q2)' T ∗q1

Q1⊕T ∗q2
Q2, for

q1 ∈Q1 and q2 ∈Q2 where T ∗Q denotes the cotangent bundle of a differentiable manifold Q.
Therefore, any covector α ∈ T ∗(q1,q2)

(Q1×Q2) admits an unique decomposition α = α1+α2

where αi ∈ T ∗qi
Qi, for i = 1,2. Thus, given a discrete Lagrangian Ld we have the following

decomposition
dLd(q0,q1) = D1Ld(q0,q1)+D2Ld(q0,q1).

where D1Ld(q0,q1) ∈ T ∗q0
Q and D2Ld(q0,q1) ∈ T ∗q1

Q.
The discrete variational principle, or Cadzow’s principle, states that the solutions of the

discrete system determined by Ld must extremize the action sum given fixed points q0 and
qN . Extremizing Ad over qk with 1≤ k ≤ N−1, we obtain the following system of differ-
ence equations

D1Ld(qk,qk+1)+D2Ld(qk−1,qk) = 0. (3)

These equations are usually called discrete Euler-Lagrange equations. Given a solution
{q∗k}k∈Z of eq. (3) and assuming the regularity hypothesis (the matrix (D12Ld(qk,qk+1))
is regular), it is possible to define a (local) discrete flow ϒLd : Uk ⊂ Q×Q→ Q×Q, by
ϒLd (qk−1,qk) = (qk,qk+1) from (3), where Uk is a neighborhood of the point (q∗k−1,q

∗
k).

2.2. Variational integrators for systems with constraints. In this subsection we recall
some basic elements on discrete mechanics for systems with constraints using discrete vari-
ational calculus (see [2]). The solutions of the discrete Euler-Lagrange equations for sys-
tems with constraints are the critical sequences of a discrete action sum subjected to some
constraint functions.

Consider a continuous mechanical system subject to constraint functions which is deter-
mined by a Lagrangian L : T Q→R and a constraint submanifold M of T Q locally defined
by the vanishing of m independent constraints Φα : T Q→ R with 1 ≤ α ≤ m. That is,
span{DΦα} is of maximum rank at each point.

Let us consider the augmented Lagrangian L̃ : T Q×Rm→ R given by

L̃(q, q̇,λ ) := L(q, q̇)+λαΦ
α(q, q̇).

The Euler-Lagrange equations for L̃ are

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi + λ̇α

(
∂Φα

∂ q̇i

)
+λα

(
d
dt

(
∂Φα

∂ q̇i

)
− ∂Φα

∂qi

)
= 0, 1≤ i≤ n,

Φ
α(qi(t), q̇i(t)) = 0, 1≤ α ≤ m,

where λα , with α = 1, . . . ,m, are the Lagrange multipliers.
In order to discretize this system, the velocity space T Q is substituted by the cartesian

product Q×Q and then, the Lagrangian L is replaced by a discrete Lagrangian Ld : Q×Q→
R. In the same way, we discretize M as a discrete constraint submanifold Md ⊂ Q×Q
defined, locally, by the vanishing of m independent constraint functions Φα

d : Q×Q→ R,
1≤ α ≤ m.

The discrete constrained variational problem is defined by{
ext Ad(q0,q1, . . . ,qN), with q0 and qN fixed,
subject to Φα

d (qk,qk+1) = 0, 1≤ α ≤ m and 0≤ k ≤ N−1,
(4)

where Ad was defined in equation (2).
We consider the augmented discrete Lagrangian L̃d : Q×Q×Rm→ R defined by

L̃d(q, q̄,λ ) = Ld(q, q̄)+λαΦ
α
d (q, q̄).

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014



138 LEONARDO COLOMBO, DAVID MARTÍN DE DIEGO, AND MARCELA ZUCCALLI

From the Lagrange multiplier theorem [1], we deduce that the solutions of the constrained
problem (4) coincide with the solutions of the discrete variational problem{

ext ˜Ad (q0,q1, . . . ,qN ,λ
0,λ 1, . . . ,λ N−1), with q0 and qN fixed ,

qk ∈ Q, λk ∈ Rm, k = 0, . . . ,N−1, qN ∈ Q,
(5)

where

˜Ad (q0,q1, . . . ,qN ,λ
0,λ 1, . . . ,λ N−1) :=

N−1

∑
k=0

L̃d(qk,qk+1,λ
k),

and λ k is a n-vector with components λ k
α with 1≤ α ≤ m.

Therefore, applying standard discrete variational calculus one can deduce that the solu-
tions of problem (4) verify the following set of difference equations

D1Ld(qk,qk+1)+D2Ld(qk−1,qk)+λ
k
αD1Φ

α
d (qk,qk+1)+λ

k−1
α D2Φ

α
d (qk−1,qk) = 0, (6)

for 1≤ k ≤ N−1, together with the discrete constraints Φα
d ,

Φ
α
d (qk,qk+1) = 0 , 1≤ α ≤ m and 0≤ k ≤ N−1.

Here DiΦ
α
d with i = 1,2 are defined following the definition of D1Ld and D2Ld .

For all functions G∈C∞(Q×Q) we denote by D12G the n×n-matrix
(

∂ 2G
∂qA∂ q̄B

)
where

(qA, q̄A) are local coordinates on the product manifold Q×Q, with A = 1, . . . ,n. Then, if
the matrix  D12Ld(q, q̄)+λαD12Φ

α
d (q, q̄)

∂Φα
d

∂q
(q, q̄)(

∂Φα
d

∂ q̄
(q, q̄)

)T

0m×m


(n+m)×(n+m)

is regular, by the implicit function theorem, if we have a point (q∗k−1,q
∗
k ,q
∗
k+1,λ

k−1
∗ ,λ k

∗ )

satisfying eq. (6), there exists a neighborhood Uk ⊂Md×Rm of the point (q∗k−1,q
∗
k ,λ

k−1
∗ ),

and a unique local application

ϒd : Uk −→ Md×Rm

(qk−1,qk,λ
k−1) 7−→ (qk,qk+1,λ

k) ,

where (qk−1,qk,qk+1,λ
k−1,λ k) satisfies eq. (6). Thus,

ϒd(qk−1,qk,λ
k−1) = (qk,qk+1,λ

k)

is a discrete second-order flow of equation (6).

2.3. Discrete second-order mechanics for systems with second-order constraints. In
what follows we denote by T (2)Q the second-order tangent bundle of a manifold Q defined
as

T (2)Q := {w ∈ T T Q : T τQ(w) = τT Q(w)},
where τQ : T Q→ Q and τT Q : T T Q→ T Q are the canonical bundle projections, locally
given by τQ(q,v) = q and τT Q(q,v, q̇, v̇) = (q,v). Locally, T (2)Q is given by the points
(q,v, q̇, v̇) ∈ T T Q such that q̇ = v.

Let us consider a second-order Lagrangian mechanical system with Lagrangian
L̄ : T (2)Q −→ R and a second-order constraint submanifold M ⊂ T (2)Q, locally defined
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DISCRETE NONHOLONOMIC MECHANICAL CONTROL SYSTEMS 139

by the vanishing of m independent second-order constraints functions Φα : T (2)Q→ R.
The Euler-Lagrange equations for the second-order constrained problem are

0 =
∂ L̄
∂qi +λα

∂Φα

∂qi −
d
dt

(
∂ L̄
∂ q̇i

)
− λ̇α

∂Φα

∂ q̇i +λα

d
dt

(
∂Φα

∂ q̇i

)
+

d2

dt2

(
∂ L̄
∂ q̈i

)
+ λ̈α

∂Φα

∂ q̈i +2λ̇α

d
dt

(
∂Φα

∂ q̈i

)
+λα

d2

dt2

(
∂Φα

∂ q̈i

)
,

0 = Φ
α(qi, q̇i, q̈i), 1≤ α ≤ m, 1≤ i≤ n.

A natural discrete space substituting the second-order tangent bundle T (2)Q is Q×Q×Q,
and therefore a discretization of this system consists on a discrete Lagrangian function L̄d :
Q×Q×Q→R and a constraint submanifold Md of Q×Q×Q which is locally defined by
the vanishing of m independent constraint functions Φα

d : Q×Q×Q→ R.
Fixing q0,q1 and qN−1,qN for some integer N > 4, we consider the discrete sequences on

Q, (q0,q1, . . . ,qN)⊂ QN+1 verifying the discrete constraints

Φ
α
d (qk−1,qk,qk+1) = 0, ∀k = 1, . . . ,N−1.

Define the discrete action sum by

Ãd(q0, . . . ,qN) :=
N−2

∑
k=0

L̄d(qk,qk+1,qk+2).

We are looking for solutions of the following constrained discrete variational problem
with constraints ext Ãd(q0,q1, . . . ,qN), with q0,q1 and qN−1,qN fixed

subject to Φα(qk,qk+1,qk+2) = 0, with 1≤ α ≤ m and 0≤ k ≤ N−2.
(7)

As in the previous section, consider the augmented Lagrangian L̂d : Q×Q×Q×Rm→R
defined by

L̂d(x,y,z,λ ) = L̄d(x,y,z)+λαΦ
α
d (x,y,z),

where (x,y,z) are local coordinates on Q×Q×Q. The solutions of the problem (7) coincide
with the solutions of the following unconstrained problem{

extremize A d (q0,q1, . . . ,qN ,λ
0,λ 1, . . . ,λ N−2), q0,q1 and qN−1,qN fixed

qk ∈ Q, λ k ∈ Rm, k = 0, . . . ,N;
(8)

where

A d (q0,q1, . . . ,qN ,λ
0,λ 1, . . . ,λ N−2) :=

N−2

∑
k=0

L̂d(qk,qk+1,qk+2,λ
k),

and λ k is a n-vector with components λ k
α for 1≤ α ≤ m.

Hence, the extremality conditions are

0 = D3L̃d(qk−2,qk−1,qk)+D2L̃d(qk−1,qk,qk+1)

+D1L̃d(qk,qk+1,qk+2)+λ
k−2
α D3Φ

α
d (qk−2,qk−1,qk)

+λ
k−1
α D2Φ

α
d (qk−1,qk,qk+1)+λ

k
αD1Φ

α
d (qk,qk+1,qk+2), 2≤ k ≤ N−2;

0 = Φ
α
d (qk−2,qk−1,qk);

0 = Φ
α
d (qk−1,qk,qk+1);

0 = Φ
α
d (qk,qk+1,qk+2).
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Here, if F ∈ C ∞(Q×Q×Q),DiF and Di jF with i, j = 1,2,3 are defined analogously to
D1G and D12G for G ∈C∞(Q×Q).

If the point (q0,q1,q2,q3,q4,λ
0
α ,λ

1
α ,λ

2
α) is a solution of the previous equations and the

matrix (
D13L̃d(x,y,z)+λαD13Φ

α
d (x,y,z) D3Φ

α
d (x,y,z)

(D1Φ
α
d (x,y,z))

T 0

)
(9)

is regular for all (x,y,z) and λα ∈ R, 1≤ α ≤ m, there exists a (local) unique application

ϒd : M d×R2m −→ M d×R2m

(q0,q1,q2,q3,λ
0
α ,λ

1
α) 7−→ (q1,q2,q3,q4,λ

1
α ,λ

2
α)

which univocally determines q4 and λ 2
α , 1≤α ≤m, from the initial conditions (q0,q1,q2,q3,

λ 0
α ,λ

1
α). Here, M d denotes the submanifold of Q4 := Q×Q×Q×Q

M d = {(q0,q1,q2,q3) ∈ Q4 |Φα
d (q0,q1,q2) = 0, Φ

α
d (q1,q2,q3) = 0, 1≤ α ≤ m}.

Remark 1. It is possible to show that, under regularity assumption, this discrete second-
order flow preserves a natural symplectic structure defined on Q4×R2m.

Let us consider the discrete 1-forms Θ
+
d ,Θ

−
d on Q4×R2m given by

Θ
+
d (q0,q1,q2,q3,λ

0,λ 1) =−
1

∑
i=0

(
i+1

∑
j=1

D jLd(qi− j+1,qi− j+2,qi− j+3)

+λ
i− j+1
α D jΦ

α
d (qi− j+1,qi− j+2,qi− j+3)

)
dqi,

Θ
−
d (qN−3,qN−2,qN−1,qN ,λ

N−3,λ N−2) =
N

∑
i=N−1

(
3

∑
j=i−N+3

D jLd(qi− j+1,qi− j+2,qi− j+3)

+λ
i− j+1
α D jΦ

α
d (qi− j+1,qi− j+2,qi− j+3)

)
dqi.

These forms are called Poincaré-Cartan 1-forms, and they give rise to the discrete Poincaré-
Cartan 2-form Ωd on Q4×R2m, given by Ωd = −dΘ

+
d = −dΘ

−
d ; it is easy to see that this

form is symplectic. Then,

Ωd(q0,q1,q2,q3,λ
0,λ 1) =

[
D21Ld(q0,q1,q2)+λ

0
αD21Φ

α
d (q0,q1,q2)

]
dq1∧dq0

+
[
D31Ld(q0,q1,q2)+λ

0
αD31Φ

α
d (q0,q1,q2)

]
dq2∧dq0

+D1Φ
α
d (q0,q1,q2)dλ

0∧dq0

+
[
D11Ld(q1,q2,q3)+λ

1
αD11Φ

α
d (q1,q2,q3)

]
dq0∧dq1

+
[
D12Ld(q0,q1,q2)+λ

0
αD12Φ

α
d (q0,q1,q2)

]
dq0∧dq1

+
[
D31Ld(q1,q2,q3)+λ

1
αD31Φ

α
d (q1,q2,q3)

]
dq2∧dq1

+
[
D32Ld(q0,q1,q2)+λ

0
αD32Φ

α
d (q0,q1,q2)

]
dq2∧dq1

+D1Φ
α
d (q1,q2,q3)dλ

1∧dq1 +D2Φ
α
d (q0,q1,q2)dλ

0∧dq1.

The canonical inclusion j : M d×R2m ↪→Q4×R2m gives rise to the 2-form ΩM d
= j∗Ωd .

From the definition of ϒd it is easy to see that

(ϒd |M d×R2m)
∗
ΩM d

= ΩM d
.
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Remark 2. Let us consider an action of a Lie group G on the manifold Q that naturally
induces an action on Q4×R2m given by

g · (q0,q1,q2,q3,λ
0,λ 1) = (g ·q0,g ·q1,g ·q2,g ·q3,λ

0,λ 1) for all g ∈ G.

It is easy to see that this action admits the discrete momentum maps

J±d : Q4×R2m→ g∗

defined as

J±d (q0,q1,q2,q3,λ
0,λ 1) : g→ R

ξ 7→ 〈Θ±d (q0,q1,q2,q3,λ
0,λ 1),ξ(Q4×R2m)(q0,q1,q2,q3,λ

0,λ 1)〉

where ξ(Q4×R2m) is the infinitesimal generator corresponding to an element of the Lie alge-
bra ξ ∈ g; that is, ξQ4(q0,q1,q2,q3,λ

0,λ 1) = (ξQ(q0),ξQ(q1),ξQ(q2),ξQ(q3),0,0).
If G is a symmetry of the discrete mechanical system with constraints Φα

d , that is, Ld and
Φα

d are G-invariant by the action g · (x,y,z,λ ) = (g · x,g · y,g · z,λ ), it is easy to see that
J+d = J−d and Jd := J+d = J−d satisfies〈

Jd
(
ϒd(q0,q1,q2,q3,λ

0,λ 1)
)
,ξ
〉
=
〈
Jd(q0,q1,q2,q3,λ

0,λ 1),ξ
〉
.

Thus, the flow ϒd preserves the momentum map.

3. OPTIMAL CONTROL OF NONHOLONOMIC MECHANICAL SYSTEMS

In this section we consider a particular class of mechanical control systems, nonholo-
nomic mechanical control systems [3, 19]. We start with the configuration space for this
class of mechanical control systems which is an n-dimensional differentiable manifold with
local coordinates (qi),1≤ i≤ n = dim(Q). Linear constraints in the velocities are given by
equations of the form

ϕ
a(qi, q̇i) = µ

a
i (q)q̇

i = 0, 1≤ a≤ m,

depending, in general, on configuration coordinates and their velocities. From an intrinsic
point of view, the linear constraints are defined by a regular distribution D on Q of rank
n−m such that the annihilator of D is locally given at each point q ∈ Q by

Do
q = span{µa(q) = µ

a
i dqi;1≤ a≤ m},

where the differential 1-forms µa(q) are independent at each q ∈ Q.
Now we consider a Riemannian metric G specifying the kinetic energy of the mechanical

system. The metric is locally determined by the matrix M = (gi j)1≤i, j≤n, where

gi j = G

(
∂

∂qi ,
∂

∂q j

)
.

Denote also by [G : T Q→ T ∗Q the corresponding induced vector bundle isomorphism
and by #G : T ∗Q→ T Q the inverse isomorphism. We can construct the Levi-Civita connec-
tion ∇G on Q as the unique affine connection which is torsion-less and metric with respect
to G . It is determined by the standard formula

2G (∇G
X Y,Z) = X(G (Y,Z))+Y (G (X ,Z))−Z(G (X ,Y ))

+G (X , [Z,Y ])+G (Y, [Z,X ])−G (Z, [Y,X ])

for all vector fields X ,Y,Z ∈X(Q); here X(Q) denotes the Lie algebra of vector fields on Q.
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Fixing a potential function V : Q→ R, the mechanical system is defined by the mechan-
ical Lagrangian L : T Q−→ R,

L(vq) =
1
2
G (vq,vq)−V (q), where vq ∈ TqQ. (10)

Using some basic tools of Riemannian geometry, we write the equations of motion of the
unconstrained system as

∇
G
ċ(t)ċ(t)+gradGV (c(t)) = 0; (11)

where t 7→ (q1(t), . . . ,qn(t)) is the local representation of c and, gradGV is the vector field
on Q characterized by

G (gradGV,X) = X(V ), for every X ∈ X(Q).

In local coordinates, gradGV (c(t)) = gi j ∂V
∂q j , where (gi j) is the inverse matrix of (gi j).

The Lagrange-d’Alembert principle states that the equations of motion for a controlled
nonholonomic control system determined by (L,D) are given by

d
dt

(
∂L
∂ q̇i (q(t), q̇(t))

)
− ∂L

∂qi (q(t), q̇(t)) = λα(t)µα
i (q(t))+ua(t)θa(q(t)), (12)

µ
α
i (q(t))q̇

i(t) = 0,

where θa are independent differential 1-forms at each point of Q, with m + 1 ≤ a ≤ n;
(um+1, . . . ,un)∈U ⊂Rn−m are the control inputs and λα ,1≤α ≤m are the Lagrange multi-
pliers. Using the Levi-Civita connection the intrinsic equations of motion for the controlled
nonholonomic control problem are given by

∇
G
ċ(t)ċ(t)+gradGV (c(t))−ua(t)Ya(c(t)) ∈D⊥ċ(t), (13)

ċ(t) ∈Dc(t).

Here, we denote by Ya = ]G θa, D = span{Ya}, m+1≤ a≤ n, and D⊥ denotes the orthog-
onal complement of D respect to the tangent bundle decomposition T Q = D⊕D⊥.

An alternative way of writing equations (13) is the following one:

C abGc(t)

(
∇

G
ċ(t)ċ(t)+gradGV (c(t)),Yb(c(t))

)
= ua, m+1≤ a≤ n; (14)

ċ(t) ∈Dc(t),

where Cab = G (Ya,Yb) and C ab is the inverse matrix of Cab.
In local coordinates, defining the n3 functions Γk

i j (Christoffel symbols for ∇) by

∇ ∂

∂qi

∂

∂q j = Γ
k
i j

∂

∂qk ,

we may rewrite the nonholonomic control equations as

Y k′
b (c(t))gkk′(c(t))

(
q̈k(t)+Γ

k
i j(c(t))q̇

i(t)q̇ j(t)+gki(c(t))
∂V
∂qi (c(t))

)
= Cabua(t),

µ
a
i (c(t))q̇

i(t) = 0.

Given a cost function C : D×U → R, a solution of the optimal control problem consists
in finding a trajectory (c(t),u(t)) satisfying equations (14) given initial and final boundary
conditions (c(t0), ċ(t0)) and (c(t f ), ċ(t f )), respectively, extremizing the cost functional

A =
∫ t f

t0
C(c(t), ċ(t),u(t))dt,
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where ċ(t) ∈Dc(t).
It is well know that this optimal control problem is equivalent to the following second-

order problem: Extremize the functional

Ã =
∫ t f

t0
L̃(c(t), ċ(t), c̈(t))dt

subject to ċ(t) ∈Dc(t), where

L̃(c(t), ċ(t), c̈(t)) =C
(

c(t), ċ(t),CabG
(

∇
G
ċ(t)ċ(t)+gradGV (c(t)),Y b

))
.

3.1. Variational integrators for nonholonomic mechanical control systems. In this sub-
section, we show that the discrete variational approach with constraints of a second-order
problem is an appropriate framework for the treatment of the discrete versions of optimal
control problems for nonholonomic mechanical system considered before. The main appli-
cation is the construction of geometric numerical integrators for this type of control systems.

A possible discretization of the nonholonomic Euler-Lagrange equations with controls
(14) is

D2Ld(qk−1,qk)+D1Ld(qk,qk+1)+h(ua)k[G (Ya) |qk= 0 , 1≤ k ≤ N−1 ; (15)

where h is the fixed time step and Ld is a discretization of the Lagrangian L. Using the same
ideas as before, we can rewrite equation (15) as

−C ab(qk)〈D2Ld(qk−1,qk)+D1Ld(qk,qk+1),Yb |qk〉= h(ua)k, m+1≤ a≤ n (16)

µ
a
i (qk)

(
qk+1−qk

h

)
= 0 , (17)

where now we are assuming that Q is a vector space.

Remark 3. In general it is not necessary to assume that Q is a vector space. Assuming that
Q is equipped with a Riemannian metric G̃ , (not necessarily equal to the prescribed Rie-
mannian metric G ) and denote by expq0

: U ⊂ Tq0Q→ Q the exponential mapping defined
on a neighborhood U of TqQ such that U 7→ expq0

(U ) is a diffeomorphism.
If τ = h(expq0

)−1, then τ(q0,q1) = h(expq0
)−1(q1) ∈ Tq0Q and therefore τ(q0,q1) =

hvq0 ∈ Tq0Q gives rise to a discretization mapping.
Now we can discretize the constraint equations (17) as

µ
a
i (qk)

τ(q0,q1)

h
= 0.

If Q = Rn we take the Euclidean metric and the discretization would be

τ(q0,q1)

h
=

q1−q0

h
.

For simplicity we use this discretization but it is straightforward to use another map-
ping τ .

The optimal control problem is determined prescribing the discrete cost functional

Ad =
N−1

∑
k=1

hC(qk,qk+1,(ua)k)

with initial and final boundary points q0,q1 and qN−1,qN , respectively.
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Since the control variables appear explicitly in (15), the previous discrete nonholonomic
optimal control problem is equivalent to the second-order discrete variational problem with
constraints determined by

L̄d(qk−1,qk,qk+1) =C
(

qk,qk+1,−
1
h
C ab(qk)〈D2Ld(qk−1,qk)+D1Ld(qk,qk+1),Ya |qk〉

)
,

µ
a(qk)

(
qk+1−qk

h

)
= 0.

As in the previous section, we define L̂d : Q×Q×Q×Rm→ R as

L̂d(qk,qk+1,qk+2,λα,k) = L̄d(qk,qk+1,qk+2)+λa,kµ
a(qk+1)

(
qk+2−qk+1

h

)
,

and from the results deduced in the previous section we can derive the discrete equations of
motion which give rise to a geometric integrator for the proposed optimal control problem.
Since this integrator has been obtained from a variational point of view, it automatically
preserves the symplectic structure and momentum map (if it is the case) for optimal control
problems of nonholonomic mechanical systems (see [7, 8] and references therein). The
discrete equations of motion are

0 = µ
a(qk−1)

(
qk−qk−1

h

)
,

0 = µ
a(qk+1)

(
qk+2−qk+1

h

)
,

0 = µ
a(qk)

(
qk+1−qk

h

)
,

0 = D3L̄d(qk−2,qk−1,qk)+D2L̄d(qk−1,qk,qk+1)+D1L̄d(qk,qk+1,qk+2)

+
λ k−1

a

h

(
−µ

a
i (qk)+

∂ µa
i

∂qk

∣∣∣
qk
(qi

k+1−qi
k)

)
+

λ k−2
a

h
µ

a
i (qk−1).

3.2. An illustrative example: The nonholonomic particle. The following typical exam-
ple will illustrate some of the constructions of the previous sections. It corresponds to a
discretization of the nonholonomic particle in R3 with the Euclidean metric described by

L(x,y,z, ẋ, ẏ, ż) =
1
2
(ẋ2 + ẏ2 + ż2)

and the nonholonomic constraint Φ = ż−yẋ = 0, which is related to the following distribu-
tion:

D = span
{

∂

∂x
+ y

∂

∂ z
,

∂

∂y

}
.

By introducing controls we obtain the following controlled nonholonomic problem

ẍ+ yz̈ = u1,

ÿ = u2,

ż− yẋ = 0.

If we consider the cost function C =
u2

1 +u2
2

2
, we obtain the following second-order vari-

ational problem with second-order constraints: Extremize

Ã =
∫ t f

t0
L̄
(
qA(t), q̇A(t), q̈A(t)

)
dt,
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subject to the second-order constraints given by

Φ(qA, q̇A, q̈A) = ż− yẋ = 0.

Here L̄ : T (2)Q→ R is defined by

L̄(qA, q̇A, q̈A) =
(ẍ+ yz̈)2

2
+

ÿ2

2
.

The equations of motion are given by the following system of fourth order ordinary
differential equations

0 = x(iv)+ z(iv)+2
...z ẏ+ z̈ÿ− λ̇y−λ ẏ,

0 = y(iv)+ z̈(ẍ+ z̈y)+λ ẋ,

0 = λ̇ + ÿ(ẍ+ z̈y)+2ẏ(
...x +

...z y+ z̈ẏ)+ y(x(iv)+ z(iv)+2
...z ẏ+ z̈ÿ),

ż = yẋ.

Now, we discretize the previous constrained problem. Denoting by

∆
2[qk] =

(
qk+2−2qk+1 +qk

h2

)
,

we obtain a constrained second-order discrete variational problem determined by

L̄d(qk,qk+1,qk+2) =
(
∆

2[xk]+ yk+1∆
2[zk]

)2
+∆

2[yk],

Φd(qk,qk+1,qk+2) =
zk+2− zk

2h
− yk+1

xk+2− xk

2h
= 0.

Fixing initial and final conditions, the discrete algorithm is given by the solutions of

yk+1λ
k+1−λ

k−1yk−1 =−
4
h

(
∆

2[xk]+ yk+1∆
2[zk]−2∆

2[xk−1]−2yk∆
2[zk−1]

+ ∆
2[xk−2]+ yk−1∆

2[zk−2]
)
,

λ
k(xk+1− xk−1) = 4h

(
∆

2[xk−1]+ yk∆
2[zk−1]

)
∆

2[zk−1],

λ
k+1 = λ

k−1− 4
h

(
∆

2[xk]+ yk+1∆
2[zk]−2∆

2[xk−1]−2yk∆
2[zk−1]

+ ∆
2[xk−2]+ yk−1∆

2[zk−2]
)
,

zk+1 = zk−1 + yk(xk+1− xk−1).

Finally, given a second order Lagrangian L the energy function associated with this sys-
tem is given by (see [14])

E(q, q̇, q̈) =
(

∂ L̄
∂ q̇A −

d
dt

∂ L̄
∂ q̈A

)
q̇A +

∂ L̄
∂ q̈A − L̄(q, q̇, q̈).

For the nonholonomic particle the second-order energy associated with the augmented
Lagrangian is given by

E(q, q̇, q̈,λ ) = (−λy− ...x − ẏz̈− y
...z )ẋ−

...y ẏ+(λ − ẏ(ẍ+ yz̈)+ y(
...x + ẏz̈+ y

...z ))ż.
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A possible discretization of the higher-order energy is given by

Ed =

[
−λ0

(
y0 + y1

2

)
−
(

x3−3x2 +3x1− x0

h3

)
−
(

y1 + y0

2

)(
z3−3z2 +3z1− z0

h3

)
−
(

y1− y0

h

)(
z0−2z1 + z2

h2

)](
x1− x0

h

)
−
(

y1− y0

h

)(
y3−3y2 +3y1− y0

h3

)
+

[
λ0−

(
y1− y0

h

)(
x0−2x1 + x2

h2 +
y1 + y0

2

(
z2−2z1 + z0

h2

))
+

(
y1 + y0

2

)(
x3−3x2 +3x1−3x0

h3 +

(
y1− y0

h

)(
z2−2z1 + z0

h2

))
+

(
y1 + y0

2

)(
z3−3z2 +3z1− z0

h3

)](
z1− z0

h

)
.

It is well know, since the integrator is variational, that this discrete energy function presents
a good behavior under the solutions of the discrete second-order Euler-Lagrange equations
(see [4] and [6] for example).

CONCLUSIONS AND FUTURE WORK

We have defined, from a discretization of Hamilton’s principle, variational integrators for
second-order mechanical systems with second-order constraints. As an interesting applica-
tion, we have used our techniques to construct a variational integrator to solve an optimal
control problem for nonholonomic mechanical systems. Finally, we show how to apply
the theory in a particular example: the optimal control of a nonholonomic particle. In un-
published work we establish a geometric and intrinsic description for optimal control prob-
lems for nonholonomic mechanical systems, and the geometric derivation of new numerical
schemes. Also we want to study the numerical behavior of the proposed numerical methods
in different simulations and the extension of backward error analysis techniques for these
methods.
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