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THE HOMOTOPY ANALYSISMETHOD IN THE SEARCH
FOR PERIODIC ORBITS

WALTER REARTES

ABSTRACT. The Homotopy Analysis Method (HAM) is a recently develogedhnique
designed to solve differential equations and of other typeshe first part of these notes
a review of some classical results on periodic orbits ismiv&@hen the implementation
of HAM to solve these problems is shown. Finally, some rasfdt delay differential
equations are shown.

1. INTRODUCTION

These notes contain the material of the lecture given by titlgoa at the XII Congress
Dr. Antonio Monteiro. The talk is about the application oétHomotopy Analysis Method
(HAM) for finding periodic orbits in dynamical systems moel@lby ordinary differential
equations and differential equations with delay.

The search and study of the periodic orbits in dynamicalesystis of continuing im-
portance since its inception. This occurs both from thertézal and practical standpoint.
Just mention the index theory, the theory of Poincaré—B@amdor the famous sixteenth
Hilbert problem to check the enormous impact of this issuiénfield of mathematics and
its applications ([24, 15, 12]).

The need to find explicit expressions of the orbits has mi/éhe development of sev-
eral methods, including the HAM initially developed by $imjLiao [18/19, 18]. The HAM
has been used to find periodic orbits in various situatiows.irfistance, to approximate the
limit cycle in the van der Pol equation![9], to find solutiorms the mKdV equation [27] or
cycles around a centerl[7].

In the search for periodic orbits with the Homotopy Analylsisthod a series solution
is constructed in the spirit of the Poincaré—Lindstedt mét[22,14]26]. The successive
terms of the solution are found by imposing conditions thresuee the cancellation of the
secular terms in the solutions of a properly chosen linearaipr. This procedure is sum-
marized in[7].

The organization is as follows. Some classical elementasylts on periodic orbits
are shown in section 2. In section 3 the Poincaré—Lindstesthod, perhaps the closest
antecedent of HAM, is described. Then the HAM, as used indlaech for periodic orbits,
is shown. Finally, two examples are given: one is the simpledplum and the other is a
version of the van der Pol equation to which a linear term wélay is added.

2. PERIODIC ORBITS

A dynamical system is essentially a state space where tirolit®on occurs. It can
be seen as the action of a uniparametric group (or semigra@ space, usually a dif-
ferentiable manifold. In these notes we consider dynansigsiems modeled by ordinary
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94 WALTER REARTES

differential equations of the type
X = f(x1t), with x(t)eDcCR", f:DxR—R"

Here the evolution is given by the flow of the vector fidld

A periodic solution is a solution of the above equation foiickhthere is a > 0 such
thatx(t+T) = x(t) for all t. The smallesT with this property is the period.

Various criteria have been established (especially initurbensional case, see [12,15])
to determine the existence of periodic orbits. Here are sairtteem.

Gradient fieldsIf the field is a gradient’ = — gradV (x), then it is easy to see that a periodic
orbit could not exist.

Dulac criterion Given by the following theorem.

Theorem 1. Let R be a simply connected region®$ and consider the following system
in R

X = f(xy)

y =9(xy),

where f and g are € functions. Suppose that there is & @nction, Kx,y) such that
div(hf,hg) has a definite sign in R. Then the system has no periodic arbiRs

In the particular case wheke= 1 it is known as Bendixon criterion.

Lyapunov function criterionif there is a monotonically decreasing function along the o
bits, then the system has no periodic orbits.

Index TheoryWe can say informally that the index of a curve in a vectodfisthe number
of times the field is rotated counterclockwise along the euivhe index of an equilibrium
is the index of a curve arbitrarily close to the equilibriumat enclose no other equilibrium.
Writing Ic or Iy for the index of a curv€ or an equilibriumx we have the following lemma

Lemmal. If a closed curve C encloses n fixed poirtsc, ..., Xn, then
lc=Ilg+-+Ix.
From this lemma we draw some conclusions, for example:

e Any closed orbit in the plane must enclose equilibria whoskices add up-1.
e In particular, if the field has no equilibria, then there cainexist periodic orbits.
o If a periodic orbit contains a unique equilibrium, then ihazot be hyperbolic.

Poincaré—Bendixon theorerAnother important result is the theorem of Poincaré—Bemdi
which essentially describes the periodic attractors impthae. It can be stated as follows

Theorem 2. Let R be a closed and bounded region of the plane. Considesybiem

X = f(x), where f is at least & Suppose that R contains no equilibria of f. Assume
further that there is an orbity, of f that remains in R for all t. Thep s either a closed
orbit or it asymptotically approaches a closed orbit, thati limit cycle exists in R.

A periodic orbit may belong to various dynamical scenari&®r example it may be
isolated, then it is called a limit cycle. Figuré 1 shows timeitl cycle of the van der Pol
equation, perhaps the best known example [25, 11]. Othengbes of limit cycles are
emerging cycles from a a Hopf bifurcation [12] 15].

Another usual type of periodic orbits are located at centdese there is a continuum of
concentric cycles around a non hyperbolic equilibrium. sTieme is usually reserved for
the case of conservative systems or bi-dimensional systbntsgure[2 the phase portrait
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van der Polg=5

FIGURE 1. Limit cycle of the van der Pol equation with= 5.

of a simple pendulum is shown. To the left is the usual reprtasien in the plané-6’ and
on the right a 3-dimensional representation on the cylingkich is the manifold where the
dynamics actually occurs.

FIGURE 2. Phase portrait of a simple pendulum. (&)8’, plane, (b) in the cylinder.

A more complex scenario is shown in the case of a chaoticcatitaFor example, the
most famous of all, the Lorenz attractor represented inglsasce in Figurgl 3 left. In a
neighborhood of the attractor there is a dense distributfounstable periodic orbits; one
of them is shown on the right in the same figure. These orbétsraerpreted as knots. The
article [10] highlights the remarkable relationship betwehe periodic orbits of the Lorenz
attractor and the periodic orbits of the modular flow in thacgpof lattices (as appearing
in number theory). In the article are also displayed mudtigshimations of these wonderful
mathematical objects.
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(a) | (b)

FIGURE 3. (a): Lorenz attractor, (b) periodic orbit in the vicinity the attractor

3. POINCARE-LINDSTEDT METHOD

This section describes the method of Poincaré—Lindstegresented in [26] (see also
reference[[14]). The method is based on the Poincaré expatistorem which is stated
later ([22/26]). We consider the initial value problem

)(: f(t,X,E), X(tO):r,a

where it is assumed thdft,x, €) can be expanded in a convergent Taylor series areaund
in a certain domain. The unperturbed problem is

Xp = f(t,%0,0).

This problem has a periodic solutiory(t), with initial condition xp(tg). We assume that
the solution fore # 0 has initial condition

X(to) = Xo(to) + H,
with constantu. Settingx(t) = y(t) + Xo(t) we obtain
y’:F(t,y,S), y(tO):ua

whereF (t,y, &) = f(t,y+Xo(t),€) — f(t,%(t),0). The next theorem shows that there exist
solutions in series arourg= 0.

Theorem 3 (Poincaré expansion theoremVe consider the initial value problent 3
F(t,y,€), y(to) =, with [t —tp| <d, ye DCR", 0< e <&, 0< u <. F(tye)
continuous int, and. It can also be expanded in convergent power series witrerdsp y
ande for ||y]| < p, 0 < & < &, then \(t) can be expanded in convergent power series with
respect tae and i in a neighbourhood of = u = 0, convergent on the time-scale

The time-scale 1 means that the solution is valid for smalkfiindependent af. Below
the conditions under which the solutions #+# 0 are periodic are shown.

3.1. Periodicity conditions. Consider the equation
X' +x=¢ef(x,X,¢), (1)

wheree > 0 and(x,x) € D c R?. If £ = 0 then the solutions are periodic with perioxt.2
We assume that there are periodic solutions for smaBuppose that iD and 0< € < g
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the requirements of the expansion theorem of Poincaré tisfied SettingT = T (¢),
x(0) = a(¢) andx'(0) = 0 then the expansion theorem of Poincaré gives

lim x(t, &) = a(0) cost.

=0

on time-scale 1.
Calling wt = 8, andw~2 = 1— &n(¢) the equation{1) is written as

X' +x=¢€(nx+(1—en)f(x,(1—en) X,¢))
= £g(x,X,&,n),

with initial conditionsx(0) = a(g) andx/(0) = 0. The solution can be obtained with the
following formula

X(8) =acod0) +¢ /oeserw — D)g(X(1), X (1), &,m)d.
If this solution is periodic then it must verify(8) = x(8 -+ 2m), then
/99+2nser(9 —1)g(X(1),X(1),€,n)dT = 0.

Equivalently

/c;znser(r)g(X(T)ﬂ((T%&n)dr =0

/c;zncos(r)g(x(T)ﬂ((T%&n)dr —0.
In particular, fore = 0

/Oznser(T)f(a(O) cog(1),—a(0)ser(),0)dr = 0

mm (0)a(0) + /(;2"Cos(r)f(a(0) cog(1), —a(0)sen(t),0)dr = 0.

This system of nonlinear equations gives the vah(@$ andn (0) that generate the possible
periodic solutions. The solutions of these equations spord to the cancellation of the so-
called secular terms in the solution of the original equegjas will be seen in the example
below. In particular, the condition for unique solution is

d(F1,F)
d(a,n)

£0

giving the condition

a(0) /ozn (%ser{Zr)%(a(O) coq1),—a(0)sen(1),0)dr
—ser?(r)g—;(a(O) cog(1),—a(0) ser(r),O)) dr #0.

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 201



98 WALTER REARTES

3.2. Example: van der Pol. Hereinafter the application of the Poincaré—Lindstedthmet
to the van der Pol equation is shown. We consider the equation

X' +e(x—1)X +x=0.

A new variable8 = wt is introduced so that the new period ig.2The equation is written
as
WX’ + ew(x* — )X +x=0.
Then we substitute the following expansions
X(6) =X%o(6) +&x1(6) + -
W=w+EW+---.

Note thatapy = 1. Linear differential equations are obtained for eachy considering
powers ofe. The first three are

X +X =0
1+x10= =200 — (X5 — 1)
X5 +Xp = —(00f + 202)%g — 2014 — (6§ — 1) (¥ + WiXp) — X%,

The initial conditions arep(0) = a, x1(0) = x2(0) = 0, andx;(0) = X, (0) = x,(0) = 0.
These equations are solved using the freedom to choose #fiéciemts (y and a to
eliminate the resonant (also called secular) terms. Thestna terms corresponding to the

first harmonic (frequency 1) and thus give rise to non-pécigdlutions of the typé sinf

or 6cosb.
Substitutingxy(6) = acos into the equation fok; gives

3

2
X1(6) +x1(0) = 2aw; cosb — a <l— az> send + az send.

Settingwy, = 0 anda = 2 gives the equation
X1(0)+x.(0) =2send.

The solution i (8) = (3sin6 —sin39) /4.
Replacingxy andx; into the equation foxk, gives

X3(0) +X%2(0) = <4w2 + %) cosf —6cosP +5cosD.
Then we choosey, = —1/16. The result up to order 2 is
X(0) = % (192 coswb + £(72sinwO — 24 sin 300)—
€%(13coswd + 18¢0s 306 — 5¢c0s500))

wherew = 1—€2/16. In the Figuré14 the solution of order 2 is shown as a functib
time. A numerical solution is also shown. It should be noteslgood match for a value of
£=0209.
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van der Polg=0.9
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FIGURE 4. solid line: Poincaré—Lindstedt, order 2; dashed linenerical solution.

4. THE HOMOTOPY ANALYSIS METHOD

The HAM was proposed in Liao’s thesis in 1992. It is an analittechnique applied to
solving nonlinear ordinary and partial differential eqaas (and of other types). It basically
consists in a continuous deformation of the solution of akmbnear problem to obtain the
solution of the nonlinear problem. The solution is exprdsae a series of functions in a
given base.

Among the methods created to solve nonlinear differentjgiaons we mention per-
turbative methods [([14, 21]), which depend on the existarfcamall or large parameters
such as the Poincaré—Lindstedt method. Other methods areydpunov small artifi-
cial parameter method, the Adomian decomposition methwdiexpansion method or
the HAM. The last mentioned method may be considered, to sxtent, a generaliza-
tion of the above mentioned, especially the Poincaré—Isiesti method, with which it has
many features in common. It has experienced a major develnptaday (see for example
[1,5,7,/16]19, 17, 18, 20]).

4.1. Description of the method. We consider the differential equation
y =1(y,s), with y(s)eR", f:DCR"xR—R".

Suppose that the system has a periodic orbit of frequanagd amplitudea. After making
the replacements= ws andy = ax, the normalized equation becomes

waX = f(axt/w), 2)
In the new variables the equation has a solution of amplitudefrequency 1. We writél(2)
asN(x, w,a) = 0, with initial conditionsx(0) = a, X (0) = 0. In the general case we write
N[X7917927' . 7gm] = 07

wherex(t) € R"andg; € R,i =1,...,m, are constants to be determined. The frequency is
always among them. Besides we have the initial conditions.

To find the periodic solutiomp(t), a family of operators, dependent on the deformation
parameteq € [0,1], is constructed. The family is written as

Hal@] = (1—0) Z[@— x| —q h.Aq[q],
where@(t,q) is the homotopyh # 0 is a real parametexy(t) is an initial approximation
that verify initial conditions and?’ is a suitably chosen linear operator. Finall is the
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operator
Aale] = No(t,0), y1(a), y2(A); - -, n(Q)]-
We search for analytical functiongt,q), y1(q), . . ., ¥m(q), such that
i. JGlp)=0forallge[0,1],
ii. @(t,q) verifies the initial conditions foq € [0, 1].
If these functions exist then taking= 0 andg = 1 we have

Hl9] = Z[p(t,0) —xo(1)] =0 and H[¢g] = —h[e(t,1)] =0.

Thenxp(t) = @(t,1), g1 = y4(1),...,0m = ¥m(1) is the solution.
For finding the functiongp(t,q), y1(q), ..., ym(q) we consider its series expansions

400 +o0 00
ot,a) = 5 %t @)=Y gud, . @)= gmd
k=0 k=0 k=0

It is explicitly assumed that the successiyé) are generated by certain base of functions
B = {B1,B,...}. For example trigonometric functions in the search forquid solutions.
Replacing the above expressionsi#g[¢] = 0, and taking thé-th derivative with respect
togatq= 0 we obtain fok=1,2,...

h ot Alel

g[xk(t) - (1_ 5lk)xk—l(t)] = (k— 1)! 0qk—1

a=0

Considering thatp(t,0) = xo(t) satisfies the initial conditions, then it should be imposed
Xc(0) =% (0) =0 fork > 1.

The terms(t) are calculated by solving the equations with given init@hditions. We
impose that each term be periodic. Depending on the linearabgr, certain conditions
must be verified to prevent theth term contains non-periodic functions (of the foroost
or tsert). These conditions allow us to calculate the tegpsi=1,....m. Fork=1
we obtain a system of nonlinear equations with unknowigs. . . , 9mg, While fork > 2 the
system is linear.

It remains to determine the valuehnfThe solutions thus obtained fgr, i =1,...,mand
xp(t) are functions oh. When the order goes to infinity such functions converge talaev
independent oh, for values of this parameter for which the series is coreetrgFigure b
(a) shows the so callducurves where this behavior can be seen.

4.2. Meaning of h. A concise solution with the HAM can only be obtained in a fewes
Consider as an example the first order equation with initialdition (showed in Liao’s
book [18])

X +x*=1, x(0)=0.

This equation has no periodic solutions, however it is Udefglarify the role ofh in the
HAM. The solution can be obtained by direct integrations k(i) = tanht. The perturbative
solution (for small t) is easily obtained
13 25 17, o . (2041
X)) =t—=t"4+ —t°——t" +... = ant .
® 3 "15 315 n; "
The radius of convergence of this seriesrj<.
To obtain the solution by the HAM we choose the following Bn®peratort? = d/dt,
the basis function8 = {t,t3,t>,...} and the initial solution(t) = t. Thus, we obtain the
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following solution to ordem

m
=Y Hmn(h) ant®™™,
n; m,n n

nm—n —1+] j
timn(h) = (—h) J;(” ; J>(1+h)1.

This expression is called generalized Taylor expansionig.LThe functiongim,(h) have
the property

where

1, if |14+h/ <1,
o if |14+h>1

In [2] and [23] it was noted that the so-called generalizeglldfaexpansion seems to
correspond to a shift in the point around which the develagrisedone. As follows

Umn(=1)=1 if n<m and mIi%rr.)oum’n(h) = {

f(O) = lim i)

m—oc0 n!
)

(t—tg)"

n—=
m f(n n

- mw nZO n!(tl) ki <k> ¢ —tl)k(to —tl)n_k

. (¢
= Moo nZO“m,n(fathtl) ( 0)

(t—to)",

n!
where .
fW(to) | ~ 2 fM(ta) (K k-n
”’"’”(f’to’tl):< n 2, W <n>(t°_tl)
For example taking (t) = 1/(1+t) we obtain
— nn
0= 4m, 3 ol

This expression is the Taylor expansion arote¢ —1/h— 1. With —2 < h < 0 we have
a convergence regiond t < —1+2/|h|. Thus, with proper choice di, it is possible to
increase the region of convergence of the solution.

The following result (which is shown in[2]) shows that by yiag h it is expected to
exist segments in which the Taylor series converges to thetifan.

Theorem 4. Let g: [a,b] — R continuous and f [a,b] — R. Suppose that all the deriva-
tives of f exist and are uniformly bounded, ie there is ar ® such that

m[a>§|f () <M forall k.
t

Let Gy(t,a) be the Taylor polynomial of degree n fotf arounda € (a,b). Suppose that
a = g(h), then for everye > 0andy € (a,b) there exists e N and an interval(c,d) such
that for all he (c,d) and n> N

|f(y) = Gn(y,g(h))| < e.

Corallary 1. Suppose that (f) is sufficiently differentiable ira,b], g(h) is continuous
in [a,b] and Gy(t,g(h)) is the Taylor polynomial of degree n arounghgy Then for all
y € (a,b) the function G(y,g(h)) shows an horizontal region when n goes to infinity.
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5. EXAMPLES

This section shows some examples, which were presentegd, Ifil.[6The first is the
simple pendulum. Despite its simplicity it has featured thake it interesting. First, the
non-linearity is not of polynomial type. Then, in this casisinecessary to use the formula
of Jacobi-Angerl[[3] to write the equations. Furthermorepghase space is a cylinder and
the usual angular coordinate is not suitable for analyzoigting solutions. We found a
suitable coordinate change to implement HAM in the seardhase solutions.

The other example is a differential equation with delay |([43€]). It is an infinite-
dimensional dynamical system, however, the HAM can be agpb this case. It is partic-
ularly suitable for analysis of bifurcations as we brieflpahin several cases.

5.1. Thesimple pendulum.
5.1.1. Vibrations. The equation of a simple pendulum@ + senf = 0. The application
of the HAM to this system is studied inl[7]. First we proceedange variables, yielding
w?af’”(t) +ser(ad(t)) = 0.
Now, the periodic solutiorBe(t) has unit amplitude and frequency. The initial conditions
are6p(0) = 1 and6}(0) = 0. We define
Aqlel = N[(t.9). 2(q), A9)]

2
= Q(q)ZA(q)% +sen(A()¢(t,q)).

The linear operator is
%
Lo = Fa
We takeby(t) = cost. The equation fok =1 is
07 (t) + 61(t) = h(—wfagcost + ser(agcost)),
with initial condition 8,(0) = 6;(0) = 0. Then we obtain

+o.

t
6:(t) = %cost(cosao—cos(aocost)) +hsert (—%wgaot +/ cossser(aocoss)ds> .
0

To eliminate secular terms we apply the formulas of Jacobgeh, which are of the form
cogacost) =2 Z)(—l)”JZn(a) cog2nt).
n=
Then we obtain
+o0
0/ (t)+61(t) =h (—wgaocost +2 Z)(—l)ngnH(ao) cog(2n+ 1)t)> ,
n=

giving
_ [2)(20)
—
Setting the value ofy the above equation allows us to fing, and calculatéd; (t). We
obtain

iy Jont1(ag)

91(t) = Zhnzl(_l)nl_ (2n+ 1)2

(cog(2n+1)t) —cost).
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(a) 0

73(0.1) 7 )
6y (0.1) 2 il
TN\
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_af
_4L

FIGURE 5. (a)h-curves for oscillations of the simple pendulum, (b) trajec
tory as a function of time: (---) exact, (—) HAM.

B
S

0.0 0.5 0 15 20V0

FIGURE 6. Period of the oscillations as a function of maximum vejoci
(—) exact, (--) HAM.

The equation fob(t) is
65 (1) + 62(t) = 67 (1) + 6u(t)
h (a0wh 67 (t) — (whan + 2wnwiag) cost + (a0Bs(t) + a1 cost) cog@cost)) .

After replacingayn and 6y (t) we obtain8,(t). The process can be continued this way
to high orders by using symbolic computation programs. Kanwle in Figuré b several
h-curves and the trajectory for an initial velocif(0) = 1.95 and order 15 are shown. Also
in Figure[6 the obtained period compared with the exact osbasvn. The coincidence is
remarkable.

5.1.2. Rotations. In order to obtain rotational solutions we do the followingoadinate
transformatioru = € cos@ andv = € senf. In the new coordinates the equations of the
pendulum are

U = —uv(B+?) VP %vln(u2+v2)
V= —\/2(u2+v2)‘1/2+%uln(u2+v2).
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Assuming that there is a solution of frequen@ysuch that(u(0),v(0)) = (e¢,0) then,
after a new change of coordinates we obtain

12

wu = —uv(U¥+v?) T —vE - :—2Lv|n(u2+v2)

W = V(WP +VP) V2 LuE+ %uln(u2+v2).
Here we take the operatt’
(90t 1 @\ _( ‘m/ot+m
3[%@]—< -1 9/ot ) ( @ > B ( —@+0p/ot )
and./q given by
Aalon, @] =N[(@u(t,q), »(t,0)),Q(0),=(9)] = < mi )

_ ( QIQ/0t+ (@ + @) V2 + =+ bpIn(@ + @) )
QIQ/0t+GF(@+ @) —a=—san(@+@) )

The initial conditions we must take afe(t),vo(t))" = (cost,sert)T. The equations for

k=1are
Uy (t) +va(t) = h(—apsert +cog sert + &ysert)

)=

—ug(t) 4+ Vj(t) = h(apcost + serft — &ycost),
(
t

with initial conditionsuy (0) = v1(0) = 0. The term(uy(t),v1(t))T is periodic if the coeffi-
cients of co$ and sem vanish in the following expression
= 2(—wp+ &o) cogt) + 5

,
N; — N
<0t ! 2) o 5

namely the term is periodic iy = &y, and similar expressions for higher orders. Thus we
obtain

—1+3cog2)),

ui(t) = h(codt) + %(—1— cog2t)))
vi(t) = h(sert) — %ser(Zt)).

The process can be continued to high orders by using symbatigoutation programs
as in the previous case. Several trajectories in phase apdmth mentioned coordinate
systems are shown in Figuré 7. They correspond to order 1@igure[8 the obtained
period compared with the exact one is also shown for order 10.

5.2. Equation of van der Pol with a delayed feedback. We consider the van der Pol
equation with a delayed feedback as discussed in [6]

X' (t) + €(3(t) — D)X (t) +x(t) = dex(t — 1).
After the change of variables the equation is written as
WX (1) + ew(@®?(t) — DX (1) +x(t) = dex(t — w1),

The HAM allows us to know very accurately the periodic orliitshis system. It allows
us to detect and analyze bifurcations. The methodologyistsnef taking a line in the
parameter space and finding periodic orbits on its pointssidgs, the stability of these
orbits can be studied by various methods. In this case weaisedtinuation method with
Chebyshev polynomials.
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FIGURE 7. Rotations in phase space, (a): coordinatgs(b): in the cylin-
der with coordinate®-6’. (—) exact, (--) HAM.

T S (AN P
FIGURE 8. Period of the oscillations as a function of maximum vejoci
(—) exact, (--) HAM.

As an example of this study we show the following bifurcasion

e 3: 4 resonant double Hopf. Far= 0.139057,d = 2.22971 andr = 7.90083.
The eigenvalues arei 1.125888 andti0.844416. Analysis of the cycles near the
bifurcation allows us to find a Neimark-Sacker bifurcatidodS]. This determines
the appearance of2torusT; and T, shown in Figuré9. Also a 1 : 2 resonance is
shown.

e Folds near double Hopf. Far = 0.5, T = 12254248 andd = 1.511726. The
trivial equilibrium does not change its stability and cyctbat appear are unstable.
Figure[10 shows the curves of Hopf and folds in the plane opdrameters-t.

It also compares the amplitudes obtained with the HAM withsthcalculated with
the software PDECONT.

e 1:1 resonant double Hopf. Fer= 0.254659,d = 7.85363 andr = 0.991860 with
w = 1. This situation is shown in Figufe111; the notation is theeas that of
Figure[9.
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FIGURE 9. Neighborhood of a double Hopf poing, = 0.139057. (a):
Hopf bifurcation curves in the plane of the paramets and emerging
branches from the 3 : 4 resonance, (b) amplitudes of the giermrbits
corresponding to the indicated valuesrof

a) b)
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FIGURE 10. Neighborhood of a double Hopf poirg,= 0.5. (a) Hopf
bifurcation curves in the plane of the paramei@s in the vicinity of the
double Hopf point. Also fold curve§; y F, are shown, (b) amplitude
of periodic curves corresponding to= 12.254248. Continuous curves:
PDECONT, points: HAM (full points: stable, hollow pointsnstable).

e 1:4 resonance on the curvésandTy,, the eigenvalues a2 |n these points
the cycles change its stability. In this case the dynamiogeiy complex. See
Figure[12.
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