
ACTAS DEL XII CONGRESO
DR. ANTONIO A. R. MONTEIRO (2013)
2014, Páginas 93–108

THE HOMOTOPY ANALYSIS METHOD IN THE SEARCH
FOR PERIODIC ORBITS

WALTER REARTES

ABSTRACT. The Homotopy Analysis Method (HAM) is a recently developedtechnique
designed to solve differential equations and of other types. In the first part of these notes
a review of some classical results on periodic orbits is given. Then the implementation
of HAM to solve these problems is shown. Finally, some results for delay differential
equations are shown.

1. INTRODUCTION

These notes contain the material of the lecture given by the author at the XII Congress
Dr. Antonio Monteiro. The talk is about the application of the Homotopy Analysis Method
(HAM) for finding periodic orbits in dynamical systems modeled by ordinary differential
equations and differential equations with delay.

The search and study of the periodic orbits in dynamical systems is of continuing im-
portance since its inception. This occurs both from the theoretical and practical standpoint.
Just mention the index theory, the theory of Poincaré–Bendixon or the famous sixteenth
Hilbert problem to check the enormous impact of this issue inthe field of mathematics and
its applications ([24, 15, 12]).

The need to find explicit expressions of the orbits has motivated the development of sev-
eral methods, including the HAM initially developed by Shijun Liao [18, 19, 18]. The HAM
has been used to find periodic orbits in various situations. For instance, to approximate the
limit cycle in the van der Pol equation [9], to find solutions for the mKdV equation [27] or
cycles around a center [7].

In the search for periodic orbits with the Homotopy AnalysisMethod a series solution
is constructed in the spirit of the Poincaré–Lindstedt method [22, 14, 26]. The successive
terms of the solution are found by imposing conditions that ensure the cancellation of the
secular terms in the solutions of a properly chosen linear operator. This procedure is sum-
marized in [7].

The organization is as follows. Some classical elementary results on periodic orbits
are shown in section 2. In section 3 the Poincaré–Lindstedt method, perhaps the closest
antecedent of HAM, is described. Then the HAM, as used in the search for periodic orbits,
is shown. Finally, two examples are given: one is the simple pendulum and the other is a
version of the van der Pol equation to which a linear term withdelay is added.

2. PERIODIC ORBITS

A dynamical system is essentially a state space where time evolution occurs. It can
be seen as the action of a uniparametric group (or semigroup)on a space, usually a dif-
ferentiable manifold. In these notes we consider dynamicalsystems modeled by ordinary
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differential equations of the type

x′ = f (x, t), with x(t) ∈ D ⊂ R
n, f : D×R→ R

n.

Here the evolution is given by the flow of the vector fieldf .
A periodic solution is a solution of the above equation for which there is aT > 0 such

thatx(t +T) = x(t) for all t. The smallestT with this property is the period.
Various criteria have been established (especially in the bi-dimensional case, see [12, 15])

to determine the existence of periodic orbits. Here are someof them.

Gradient fields. If the field is a gradientx′ =−gradV(x), then it is easy to see that a periodic
orbit could not exist.

Dulac criterion. Given by the following theorem.

Theorem 1. Let R be a simply connected region inR2 and consider the following system
in R

x′ = f (x,y)

y′ = g(x,y),

where f and g are C1 functions. Suppose that there is a C1 function, h(x,y) such that
div(h f,hg) has a definite sign in R. Then the system has no periodic orbitsin R.

In the particular case whereh= 1 it is known as Bendixon criterion.

Lyapunov function criterion. If there is a monotonically decreasing function along the or-
bits, then the system has no periodic orbits.

Index Theory. We can say informally that the index of a curve in a vector field is the number
of times the field is rotated counterclockwise along the curve. The index of an equilibrium
is the index of a curve arbitrarily close to the equilibrium that enclose no other equilibrium.
Writing IC or Ix for the index of a curveC or an equilibriumx we have the following lemma

Lemma 1. If a closed curve C encloses n fixed pointsx̄1, x̄2, . . . , x̄n, then

IC = Ix̄1 + · · ·+ Ix̄n.

From this lemma we draw some conclusions, for example:

• Any closed orbit in the plane must enclose equilibria whose indices add up+1.
• In particular, if the field has no equilibria, then there cannot exist periodic orbits.
• If a periodic orbit contains a unique equilibrium, then it can not be hyperbolic.

Poincaré–Bendixon theorem. Another important result is the theorem of Poincaré–Bendixon
which essentially describes the periodic attractors in theplane. It can be stated as follows

Theorem 2. Let R be a closed and bounded region of the plane. Consider thesystem
x′ = f (x), where f is at least C1. Suppose that R contains no equilibria of f . Assume
further that there is an orbit,γ , of f that remains in R for all t. Thenγ is either a closed
orbit or it asymptotically approaches a closed orbit, that is a limit cycle exists in R.

A periodic orbit may belong to various dynamical scenarios.For example it may be
isolated, then it is called a limit cycle. Figure 1 shows the limit cycle of the van der Pol
equation, perhaps the best known example [25, 11]. Other examples of limit cycles are
emerging cycles from a a Hopf bifurcation [12, 15].

Another usual type of periodic orbits are located at centers. Here there is a continuum of
concentric cycles around a non hyperbolic equilibrium. This name is usually reserved for
the case of conservative systems or bi-dimensional systems. In Figure 2 the phase portrait
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FIGURE 1. Limit cycle of the van der Pol equation withε = 5.

of a simple pendulum is shown. To the left is the usual representation in the planeθ -θ ′ and
on the right a 3-dimensional representation on the cylinder, which is the manifold where the
dynamics actually occurs.

FIGURE 2. Phase portrait of a simple pendulum. (a):θ -θ ′, plane, (b) in the cylinder.

A more complex scenario is shown in the case of a chaotic attractor. For example, the
most famous of all, the Lorenz attractor represented in phase space in Figure 3 left. In a
neighborhood of the attractor there is a dense distributionof unstable periodic orbits; one
of them is shown on the right in the same figure. These orbits are interpreted as knots. The
article [10] highlights the remarkable relationship between the periodic orbits of the Lorenz
attractor and the periodic orbits of the modular flow in the space of lattices (as appearing
in number theory). In the article are also displayed multiple animations of these wonderful
mathematical objects.
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FIGURE 3. (a): Lorenz attractor, (b) periodic orbit in the vicinityof the attractor

3. POINCARÉ–LINDSTEDT METHOD

This section describes the method of Poincaré–Lindstedt aspresented in [26] (see also
reference [14]). The method is based on the Poincaré expansion theorem which is stated
later ([22, 26]). We consider the initial value problem

x′ = f (t,x,ε), x(t0) = η ,

where it is assumed thatf (t,x,ε) can be expanded in a convergent Taylor series aroundε
in a certain domain. The unperturbed problem is

x′0 = f (t,x0,0).

This problem has a periodic solution,x0(t), with initial condition x0(t0). We assume that
the solution forε 6= 0 has initial condition

x(t0) = x0(t0)+µ ,

with constantµ . Settingx(t) = y(t)+x0(t) we obtain

y′ = F(t,y,ε), y(t0) = µ ,

whereF(t,y,ε) = f (t,y+x0(t),ε)− f (t,x0(t),0). The next theorem shows that there exist
solutions in series aroundε = 0.

Theorem 3 (Poincaré expansion theorem). We consider the initial value problem y′ =
F(t,y,ε), y(t0) = µ , with |t − t0| ≤ d, y∈ D ⊂ R

n, 0 ≤ ε ≤ ε0, 0 ≤ µ ≤ µ0. F(t,y,ε)
continuous in t, andε . It can also be expanded in convergent power series with respect to y
andε for ||y|| ≤ ρ , 0≤ ε ≤ ε0, then y(t) can be expanded in convergent power series with
respect toε andµ in a neighbourhood ofε = µ = 0, convergent on the time-scale1.

The time-scale 1 means that the solution is valid for small time, independent ofε . Below
the conditions under which the solutions forε 6= 0 are periodic are shown.

3.1. Periodicity conditions. Consider the equation

x′′+x= ε f (x,x′,ε), (1)

whereε > 0 and(x,x′) ∈ D ⊂ R
2. If ε = 0 then the solutions are periodic with period 2π.

We assume that there are periodic solutions for smallε . Suppose that inD and 0≤ ε ≤ ε0
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the requirements of the expansion theorem of Poincaré are satisfied. SettingT = T(ε),
x(0) = a(ε) andx′(0) = 0 then the expansion theorem of Poincaré gives

lim
ε→0

x(t,ε) = a(0)cost.

on time-scale 1.
Calling ωt = θ , andω−2 = 1− εη(ε) the equation (1) is written as

x′′+x= ε
(

ηx+(1− εη) f (x,(1− εη)−1x′,ε)
)

= εg(x,x′,ε ,η),

with initial conditionsx(0) = a(ε) andx′(0) = 0. The solution can be obtained with the
following formula

x(θ) = acos(θ)+ ε
∫ θ

0
sen(θ − τ)g(x(τ),x′(τ),ε ,η)dτ .

If this solution is periodic then it must verifyx(θ) = x(θ +2π), then

∫ θ+2π

θ
sen(θ − τ)g(x(τ),x′(τ),ε ,η)dτ = 0.

Equivalently

∫ 2π

0
sen(τ)g(x(τ),x′(τ),ε ,η)dτ = 0

∫ 2π

0
cos(τ)g(x(τ),x′(τ),ε ,η)dτ = 0.

In particular, forε = 0

∫ 2π

0
sen(τ) f (a(0)cos(τ),−a(0)sen(τ),0)dτ = 0

πη(0)a(0)+
∫ 2π

0
cos(τ) f (a(0)cos(τ),−a(0)sen(τ),0)dτ = 0.

This system of nonlinear equations gives the valuesa(0) andη(0) that generate the possible
periodic solutions. The solutions of these equations correspond to the cancellation of the so-
called secular terms in the solution of the original equations, as will be seen in the example
below. In particular, the condition for unique solution is

∂ (F1,F2)

∂ (a,η)
6= 0

giving the condition

a(0)
∫ 2π

0

(

1
2

sen(2τ)
∂ f
∂x

(a(0)cos(τ),−a(0)sen(τ),0)dτ

−sen2(τ)
∂ f
∂y

(a(0)cos(τ),−a(0)sen(τ),0)
)

dτ 6= 0.
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3.2. Example: van der Pol. Hereinafter the application of the Poincaré–Lindstedt method
to the van der Pol equation is shown. We consider the equation

x′′+ ε(x2−1)x′+x= 0.

A new variableθ = ωt is introduced so that the new period is 2π. The equation is written
as

ω2x′′+ εω(x2−1)x′+x= 0.

Then we substitute the following expansions

x(θ) = x0(θ)+ εx1(θ)+ · · ·

ω = ω0+ εω1+ · · · .

Note thatω0 = 1. Linear differential equations are obtained for eachn by considering
powers ofε . The first three are

x′′0 +x0 = 0

x′′1 +x1 =−2ω1x′′0 − (x2
0−1)x′0

x′′2 +x2 =−(ω2
1 +2ω2)x

′′
0 −2ω1x′′1 − (x2

0−1)(x′1+ω1x′0)−2x0x1x′0.

The initial conditions arex0(0) = a, x1(0) = x2(0) = 0, andx′0(0) = x′1(0) = x′2(0) = 0.
These equations are solved using the freedom to choose the coefficients ωi and a to

eliminate the resonant (also called secular) terms. These are the terms corresponding to the
first harmonic (frequency 1) and thus give rise to non-periodic solutions of the typeθ sinθ
or θ cosθ .

Substitutingx0(θ) = acosθ into the equation forx1 gives

x′′1(θ)+x1(θ) = 2aω1 cosθ −a

(

1−
a2

4

)

senθ +
a3

4
sen3θ .

Settingω1 = 0 anda= 2 gives the equation

x′′1(θ)+x1(θ) = 2sen3θ .

The solution isx1(θ) = (3sinθ −sin3θ)/4.
Replacingx0 andx1 into the equation forx2 gives

x′′2(θ)+x2(θ) =
(

4ω2+
1
4

)

cosθ −6cos3θ +5cos5θ .

Then we chooseω2 =−1/16. The result up to order 2 is

x(θ) =
1
96

(192cosωθ + ε(72sinωθ −24sin3ωθ)−

ε2(13cosωθ +18cos3ωθ −5cos5ωθ)
)

,

whereω = 1− ε2/16. In the Figure 4 the solution of order 2 is shown as a function of
time. A numerical solution is also shown. It should be noted the good match for a value of
ε = 0.9.
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FIGURE 4. solid line: Poincaré–Lindstedt, order 2; dashed line: numerical solution.

4. THE HOMOTOPY ANALYSIS METHOD

The HAM was proposed in Liao’s thesis in 1992. It is an analytical technique applied to
solving nonlinear ordinary and partial differential equations (and of other types). It basically
consists in a continuous deformation of the solution of a known linear problem to obtain the
solution of the nonlinear problem. The solution is expressed as a series of functions in a
given base.

Among the methods created to solve nonlinear differential equations we mention per-
turbative methods ([14, 21]), which depend on the existenceof small or large parameters
such as the Poincaré–Lindstedt method. Other methods are the Lyapunov small artifi-
cial parameter method, the Adomian decomposition method, the δ -expansion method or
the HAM. The last mentioned method may be considered, to someextent, a generaliza-
tion of the above mentioned, especially the Poincaré–Linsdstedt method, with which it has
many features in common. It has experienced a major development today (see for example
[1, 5, 7, 16, 19, 17, 18, 20]).

4.1. Description of the method. We consider the differential equation

y′ = f (y,s), with y(s) ∈ R
n, f : D ⊂ R

n×R→ R
n.

Suppose that the system has a periodic orbit of frequencyω and amplitudea. After making
the replacementst = ωsandy= ax, the normalized equation becomes

ωax′ = f (ax, t/ω), (2)

In the new variables the equation has a solution of amplitudeand frequency 1. We write (2)
asN[x,ω ,a] = 0, with initial conditionsx(0) = a, x′(0) = 0. In the general case we write

N[x,g1,g2, . . . ,gm] = 0,

wherex(t) ∈ R
n andgi ∈ R, i = 1, . . . ,m, are constants to be determined. The frequency is

always among them. Besides we have the initial conditions.
To find the periodic solutionxP(t), a family of operators, dependent on the deformation

parameterq∈ [0,1], is constructed. The family is written as

Hq[φ ] = (1−q) L [φ −x0]−q hNq[φ ],

whereφ(t,q) is the homotopy,h 6= 0 is a real parameter,x0(t) is an initial approximation
that verify initial conditions andL is a suitably chosen linear operator. FinallyNq is the
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operator

Nq[φ ] = N[φ(t,q),γ1(q),γ2(q), . . . ,γm(q)].

We search for analytical functionsφ(t,q),γ1(q), . . . ,γm(q), such that

i. Hq[φ ] = 0 for all q∈ [0,1],
ii. φ(t,q) verifies the initial conditions forq∈ [0,1].

If these functions exist then takingq= 0 andq= 1 we have

H0[φ ] = L [φ(t,0)−x0(t)] = 0 and H1[φ ] =−hN1[φ(t,1)] = 0.

ThenxP(t) = φ(t,1), g1 = γ1(1), . . . ,gm = γm(1) is the solution.
For finding the functionsφ(t,q),γ1(q), . . . ,γm(q) we consider its series expansions

φ(t,q) =
+∞

∑
k=0

xk(t)q
k, γ1(q) =

+∞

∑
k=0

g1kq
k, . . . , γm(q) =

+∞

∑
k=0

gmkq
k.

It is explicitly assumed that the successivexi(t) are generated by certain base of functions
B= {β1,β2, . . .}. For example trigonometric functions in the search for periodic solutions.
Replacing the above expressions inHq[φ ] = 0, and taking thek-th derivative with respect
to q at q= 0 we obtain fork= 1,2, . . .

L [xk(t)− (1−δ1k)xk−1(t)] =
h

(k−1)!
∂ k−1Nq[φ ]

∂qk−1

∣

∣

∣

∣

q=0
.

Considering thatφ(t,0) = x0(t) satisfies the initial conditions, then it should be imposed
xk(0) = x′k(0) = 0 for k≥ 1.

The termsxk(t) are calculated by solving the equations with given initial conditions. We
impose that each term be periodic. Depending on the linear operator, certain conditions
must be verified to prevent thek-th term contains non-periodic functions (of the formt cost
or t sent). These conditions allow us to calculate the termsgi k, i = 1, . . . ,m. For k = 1
we obtain a system of nonlinear equations with unknownsg10, . . . ,gm0, while for k≥ 2 the
system is linear.

It remains to determine the value ofh. The solutions thus obtained forgi , i = 1, . . . ,mand
xP(t) are functions ofh. When the order goes to infinity such functions converge to a value
independent ofh, for values of this parameter for which the series is convergent. Figure 5
(a) shows the so calledh-curves where this behavior can be seen.

4.2. Meaning of h. A concise solution with the HAM can only be obtained in a few cases.
Consider as an example the first order equation with initial condition (showed in Liao’s
book [18])

x′+x2 = 1, x(0) = 0.

This equation has no periodic solutions, however it is useful to clarify the role ofh in the
HAM. The solution can be obtained by direct integration. It isx(t) = tanht. The perturbative
solution (for small t) is easily obtained

x(t) = t −
1
3

t3+
2
15

t5−
17
315

t7+ · · ·=
∞

∑
n=0

αn t2n+1.

The radius of convergence of this series isπ/2.
To obtain the solution by the HAM we choose the following linear operatorL = ∂/∂ t,

the basis functionsB= {t, t3, t5, . . .} and the initial solutionx0(t) = t. Thus, we obtain the
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following solution to orderm

x(t) =
m

∑
n=0

µm,n(h)αn t2n+1,

where

µm,n(h) = (−h)n
m−n

∑
j=0

(

n−1+ j
j

)

(1+h) j .

This expression is called generalized Taylor expansion by Liao. The functionsµm,n(h) have
the property

µm,n(−1) = 1 if n≤ m and lim
m→∞

µm,n(h) =

{

1, if |1+h|< 1,

∞ if |1+h|> 1.

In [2] and [23] it was noted that the so-called generalized Taylor expansion seems to
correspond to a shift in the point around which the development is done. As follows

f (t) = lim
m→∞

m

∑
n=0

f (n)(t1)
n!

(t − t1)
n

= lim
m→∞

m

∑
n=0

f (n)(t1)
n!

n

∑
k=0

(

n
k

)

(t − t1)
k(t0− t1)

n−k

= lim
m→∞

m

∑
n=0

µm,n( f , t0, t1)
f (n)(t0)

n!
(t − t0)

n,

where

µm,n( f , t0, t1) =

(

f (n)(t0)
n!

)−1 m

∑
k=n

f (k)(t1)
k!

(

k
n

)

(t0− t1)
k−n.

For example takingf (t) = 1/(1+ t) we obtain

f (t) = lim
m→∞

m

∑
n=0

µm,n(h)(−1)ntn.

This expression is the Taylor expansion aroundt0 = −1/h−1. With −2< h< 0 we have
a convergence region 1< t < −1+ 2/|h|. Thus, with proper choice ofh, it is possible to
increase the region of convergence of the solution.

The following result (which is shown in [2]) shows that by varying h it is expected to
exist segments in which the Taylor series converges to the function.

Theorem 4. Let g: [a,b] → R continuous and f: [a,b] → R. Suppose that all the deriva-
tives of f exist and are uniformly bounded, ie there is an M∈ R such that

max
t∈[a,b]

| f (k)(t)| ≤ M for all k.

Let Gn(t,α) be the Taylor polynomial of degree n for f(t) aroundα ∈ (a,b). Suppose that
α = g(h), then for everyε > 0 andγ ∈ (a,b) there exists n∈ N and an interval(c,d) such
that for all h∈ (c,d) and n≥ N

| f (γ)−Gn(γ ,g(h))| < ε .

Corollary 1. Suppose that f(t) is sufficiently differentiable in[a,b], g(h) is continuous
in [a,b] and Gn(t,g(h)) is the Taylor polynomial of degree n around g(h). Then for all
γ ∈ (a,b) the function Gn(γ ,g(h)) shows an horizontal region when n goes to infinity.
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5. EXAMPLES

This section shows some examples, which were presented in [6, 7]. The first is the
simple pendulum. Despite its simplicity it has features that make it interesting. First, the
non-linearity is not of polynomial type. Then, in this case it is necessary to use the formula
of Jacobi-Anger [3] to write the equations. Furthermore thephase space is a cylinder and
the usual angular coordinate is not suitable for analyzing rotating solutions. We found a
suitable coordinate change to implement HAM in the search ofthese solutions.

The other example is a differential equation with delay ([13, 4, 8]). It is an infinite-
dimensional dynamical system, however, the HAM can be applied to this case. It is partic-
ularly suitable for analysis of bifurcations as we briefly show in several cases.

5.1. The simple pendulum.

5.1.1. Vibrations. The equation of a simple pendulum isθ ′′ + senθ = 0. The application
of the HAM to this system is studied in [7]. First we proceed tochange variables, yielding

ω2aθ ′′(t)+sen(aθ(t)) = 0.

Now, the periodic solutionθP(t) has unit amplitude and frequency. The initial conditions
areθP(0) = 1 andθ ′

P(0) = 0. We define

Nq[φ ] = N[φ(t,q),Ω(q),A(q)]

= Ω(q)2A(q)
∂ 2φ(t,q)

∂ t2 +sen(A(q)φ(t,q)).

The linear operator is

L [φ ] =
∂ 2φ
∂ t2 +φ .

We takeθ0(t) = cost. The equation fork= 1 is

θ ′′
1 (t)+θ1(t) = h(−ω2

0a0 cost +sen(a0 cost)),

with initial conditionθ1(0) = θ ′
1(0) = 0. Then we obtain

θ1(t) =
h
a0

cost(cosa0−cos(a0 cost))+hsent

(

−
1
2

ω2
0a0t +

∫ t

0
cosssen(a0 coss)ds

)

.

To eliminate secular terms we apply the formulas of Jacobi–Anger, which are of the form

cos(acost) = 2
∞

∑
n=0

(−1)n J2n(a)cos(2nt).

Then we obtain

θ ′′
1 (t)+θ1(t) = h

(

−ω2
0a0 cost +2

+∞

∑
n=0

(−1)nJ2n+1(a0)cos((2n+1)t)

)

,

giving

ω0 =

√

2J1(a0)

a0
.

Setting the value ofa0 the above equation allows us to findω0, and calculateθ1(t). We
obtain

θ1(t) = 2h
+∞

∑
n=1

(−1)n J2n+1(a0)

1− (2n+1)2 (cos((2n+1)t)−cost) .
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FIGURE 5. (a)h-curves for oscillations of the simple pendulum, (b) trajec-
tory as a function of time: (---) exact, (—) HAM.

FIGURE 6. Period of the oscillations as a function of maximum velocity.
(—) exact, (· · · ) HAM.

The equation forθ2(t) is

θ ′′
2 (t)+θ2(t) = θ ′′

1 (t)+θ1(t)

+h
(

a0ω2
0θ ′′

1 (t)− (ω2
0a1+2ω0ω1a0)cost +(a0θ1(t)+a1cost)cos(a0 cost)

)

.

After replacingω0 andθ1(t) we obtainθ2(t). The process can be continued this way
to high orders by using symbolic computation programs. For example in Figure 5 several
h-curves and the trajectory for an initial velocityθ ′(0) = 1.95 and order 15 are shown. Also
in Figure 6 the obtained period compared with the exact one isshown. The coincidence is
remarkable.

5.1.2. Rotations. In order to obtain rotational solutions we do the following coordinate
transformationu= eθ ′

cosθ andv= eθ ′
senθ . In the new coordinates the equations of the

pendulum are

u′ =−uv
(

u2+v2)−1/2
−

1
2

vln(u2+v2)

v′ =−v2(u2+v2)−1/2+
1
2

uln(u2+v2).
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Assuming that there is a solution of frequencyω such that(u(0),v(0)) = (eξ ,0) then,
after a new change of coordinates we obtain

ωu′ =−uv
(

u2+v2)−1/2
−vξ −

1
2

vln(u2+v2)

ωv′ =−v2(u2+v2)−1/2+uξ +
1
2

uln(u2+v2).

Here we take the operatorL

L [φ1,φ2] =

(

∂/∂ t 1
−1 ∂/∂ t

)(

φ1

φ2

)

=

(

∂φ1/∂ t +φ2

−φ1+∂φ2/∂ t

)

,

andNq given by

Nq[φ1,φ2] = N[(φ1(t,q),φ2(t,q)),Ω(q),Ξ(q)] =
(

N1

N2

)

=

(

Ω∂φ1/∂ t +φ1φ2(φ2
1 +φ2

2)
−1/2+φ2Ξ+ 1

2φ2 ln(φ2
1 +φ2

2)

Ω∂φ2/∂ t +φ2
2 (φ2

1 +φ2
2)

−1/2−φ1Ξ− 1
2φ1 ln(φ2

1 +φ2
2)

)

.

The initial conditions we must take are(u0(t),v0(t))T = (cost,sent)T . The equations for
k= 1 are

u′1(t)+v1(t) = h(−ω0 sent +cost sent +ξ0sent)

−u1(t)+v′1(t) = h(ω0 cost +sen2 t −ξ0cost),

with initial conditionsu1(0) = v1(0) = 0. The term(u1(t),v1(t))T is periodic if the coeffi-
cients of cost and sent vanish in the following expression

(

∂
∂ t

N1−N2

)
∣

∣

∣

∣

q=0
= 2(−ω0+ξ0)cos(t)+

1
2
(−1+3cos(2t)),

namely the term is periodic ifω0 = ξ0, and similar expressions for higher orders. Thus we
obtain

u1(t) = h(cos(t)+
1
2
(−1−cos(2t)))

v1(t) = h(sen(t)−
1
2

sen(2t)).

The process can be continued to high orders by using symboliccomputation programs
as in the previous case. Several trajectories in phase spacein both mentioned coordinate
systems are shown in Figure 7. They correspond to order 10. InFigure 8 the obtained
period compared with the exact one is also shown for order 10.

5.2. Equation of van der Pol with a delayed feedback. We consider the van der Pol
equation with a delayed feedback as discussed in [6]

x′′(t)+ ε(x2(t)−1)x′(t)+x(t) = dεx(t − τ).
After the change of variables the equation is written as

ω2x′′(t)+ εω(a2x2(t)−1)x′(t)+x(t) = dεx(t −ωτ),
The HAM allows us to know very accurately the periodic orbitsin this system. It allows

us to detect and analyze bifurcations. The methodology consists of taking a line in the
parameter space and finding periodic orbits on its points. Besides, the stability of these
orbits can be studied by various methods. In this case we useda continuation method with
Chebyshev polynomials.
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FIGURE 7. Rotations in phase space, (a): coordinatesu-v, (b): in the cylin-
der with coordinatesθ -θ ′. (—) exact, (· · · ) HAM.

FIGURE 8. Period of the oscillations as a function of maximum velocity.
(—) exact, (· · · ) HAM.

As an example of this study we show the following bifurcations:

• 3 : 4 resonant double Hopf. Forε = 0.139057,d = 2.22971 andτ = 7.90083.
The eigenvalues are±i 1.125888 and±i 0.844416. Analysis of the cycles near the
bifurcation allows us to find a Neimark-Sacker bifurcation (NS). This determines
the appearance of 2D torusT1 andT2 shown in Figure 9. Also a 1 : 2 resonance is
shown.

• Folds near double Hopf. Forε = 0.5, τ = 12.254248 andd = 1.511726. The
trivial equilibrium does not change its stability and cycles that appear are unstable.
Figure 10 shows the curves of Hopf and folds in the plane of theparametersd-τ .
It also compares the amplitudes obtained with the HAM with those calculated with
the software PDECONT.

• 1 : 1 resonant double Hopf. Forε = 0.254659,d = 7.85363 andτ = 0.991860 with
ω = 1. This situation is shown in Figure 11; the notation is the same as that of
Figure 9.
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FIGURE 9. Neighborhood of a double Hopf point,ε = 0.139057. (a):
Hopf bifurcation curves in the plane of the parametersd-τ and emerging
branches from the 3 : 4 resonance, (b) amplitudes of the periodic orbits
corresponding to the indicated values ofτ .

FIGURE 10. Neighborhood of a double Hopf point,ε = 0.5. (a) Hopf
bifurcation curves in the plane of the parametersd-τ in the vicinity of the
double Hopf point. Also fold curvesF1 y F2 are shown, (b) amplitude
of periodic curves corresponding toτ = 12.254248. Continuous curves:
PDECONT, points: HAM (full points: stable, hollow points: unstable).

• 1 : 4 resonance on the curvesT1 andT2, the eigenvalues aree±iπ/2. In these points
the cycles change its stability. In this case the dynamics isvery complex. See
Figure 12.
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