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ON THE CONVERGENCE OF SOME CLASSES OF DIRICHLET SERIES

DANIEL CARANDO AND PABLO SEVILLA-PERIS

ABSTRACT. We present a brief and informal account on the so-called Bohr’s absolute
convergence problem on Dirichlet series, from its statement and solution in the beginnings
of the 20th century to some of its recent variations.

INTRODUCTION

In London, during the 1908 Olympic Games, Denmark defeated France 17-1 in one of
the football (a.k.a. soccer) semifinals. This remains an Olympic record to this day. Den-
mark eventually lost the final 2-0 against Great Britain. Two years later, the whole Danish
national team attended the PhD dissertation “Bidrag til de Dirichletske Rækkers Theori”
(Contributions to the Theory of Dirichlet Series), at the University of Copenhagen. Dirich-
let series is, of course, a subject that has always attracted the attention of football players,
but the main reason for them to be there was that the one presenting the thesis was Harald
Bohr, a fine midfielder of Akademisk Boldklub and one of the stars of the national team.
He was one of the most popular sporstmen in Denmark at the moment. In the audience was
also the goalkeeper of Akademisk Boldklub, Niels, the older brother of Harald. In 1922 he
won the Nobel Prize in Physics, but he never got to play in the national team. . .

In his thesis Bohr dealt with Dirichlet series, studying them from the point of view of
holomorphic functions on one variable and linking them with power series in infinitely
many variables. He was mainly interested in convergence of Dirichlet series and stated
what later was to be known as Bohr’s absolute convergence problem. In this note we give
a short and informal account of Bohr’s absolute convergence problem for Dirichlet series:
statement, solution and some late variations of the problem.

1. CONVERGENCE OF DIRICHLET SERIES

A Dirichlet series is a formal series D = D(s) of the form

D = ∑
n

an
1
ns

with coefficients an ∈ C and variable s in some region of C. Of course, the most famous
Dirichlet series is ζ (s) = ∑n

1
ns . Dirichlet series and power series are very much related

through the theory of general Dirichlet series, of which both are particular cases.
The convergence of power series is a very well understood issue and is part of the back-

ground knowledge of every mathematician. If a power series converges (or converges ab-
solutely) at some z0 ∈ C, then it converges (or converges absolutely) for every z ∈ C with
|z|< |z0|. Then the natural domains to think of convergence of power series are disks and it
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58 DANIEL CARANDO AND PABLO SEVILLA-PERIS

makes sense to think of radius of convergence and absolute convergence. As we know, these
two radii coincide, and it turns out to be the supremum of all radii of uniform convergence.
Moreover, in the open disk of convergence the power series defines a holomorphic funcion
which is bounded in any smaller disk (since it is the uniform limit of polynomials).

The situation for Dirichlet series turns out to be quite different. If a Dirichlet series D
converges (or converges absolutely) at some s0 ∈ C, then it converges (or converges abso-
lutely) at every s ∈ C with Res > Res0. This means that, while disks are the regions of
convergence of power series, half-planes of the form {s ∈ C : Res > σ} are the regions of
convergence of Dirichlet series, and instead of radii we now have the abscissas of conver-
gence and of uniform convergence:

σc(D) = inf{σ : the series D converges in Res > σ},
σa(D) = inf{σ : the series D converges absolutely in Res > σ}.

A natural question now is if these two abscissas are equal. This can be easily answered in
the negative, simply by considering D = ∑n(−1)n 1

ns ; we obviously have σa(D) = 1 and, by
Leibniz’s criterion for alternate series, σc(D) = 0. Moreover, we can show that this is the
farthest apart that these two abscissas can be: indeed, if D converges at s0 then we have

∑
n

|an|
|ns0+1+ε |

= ∑
n

|an|
nRes0+ε/2

1
|n1+ε/2|

< ∞.

Hence, σa(D) ≤ σc(D) + 1 for every Dirichlet series D. This means that the maximum
width of the strip where a Dirichlet series converges not absolutely is 1 or, more precisely,

sup{σa(D)−σc(D) : D Dirichlet series}= 1.

On the set {s ∈ C : Res > σc(D)} the series defines a holomorphic function. The main
interest of Bohr was to be able to determine σa(D) from the analytic properties of this
function. He then considered the abscissa of boundedness

σb(D) = inf{σ : the series defines a bounded holomorphic function in Res > σ}

and also the abscissa of uniform convergence

σu = inf{σ : the series converges uniformly in Res > σ}.

We easily have
σc(D)≤ σb(D)≤ σu(D)≤ σa(D).

Then Bohr’s aim was to try to distinguish between these abscissas. First of all, by a funda-
mental theorem of Bohr [5, Satz 1] we have that for every Dirichlet series D

σb(D) = σu(D). (1)

The so-called Bohr’s absolute convergence problem asks for the maximum width of the
strip where a Dirichlet series converges uniformly but not absolutely. More precisely, let us
define

S := sup
{

σa(D)−σu(D) : D = ∑
n

an
1
ns Dirichlet series

}
.

The problem is then to determine the exact value of S.
Let us reformulate S in a way that is more keen to functional analysis. First, Bohr’s

fundamental theorem (1), a translation argument and standard manipulations of suprema
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give

S = sup
{

σa(D)−σu(D) : D = ∑
n

an
1
ns Dirichlet series

}
= sup{σa(D) : Dirichlet series with σb(D) = σu(D) = 0}
= sup{σa(D) : Dirichlet series bounded on Res > 0} .

(2)

We now define H∞ as the vector space of all Dirichlet series D = ∑n ann−s such that
σc(D)≤ 0 and that the limit function D(s) = ∑n an

1
ns is bounded on Res > 0.

It can be seen that H∞ is a Banach space with the supremum norm given by∥∥∥∑
n

ann−s
∥∥∥

H∞

= sup
Res>0

∣∣∣ ∞

∑
n=1

an
1
ns

∣∣∣ .
Now (2) can be rewritten as

S = sup{σa(D) : D ∈H∞} . (3)

On the other hand from (1) and a simple translation argument we immediately have

σu(D) = inf
{

σ ∈ R
∣∣ ∑

n

an

nσ

1
ns ∈H∞

}
. (4)

Another brilliant idea of Bohr was to look at the problem in a totally different way:
instead of working with Dirichlet series in one complex variable, work with power series in
infinitely many variables. He identified each Dirichlet series with a power series in infinitely
many variables as follows.

Let p = (p1, p2, p3, . . .) be the sequence of prime numbers. For each multi-index α =

(α1, . . . ,αN , 0 , . . .) ∈ N(N)
0 we set

pα = pα1
1 ×·· ·× pαN

N .

We have a one-to-one correspondence

α ∈ N(N)
0 !n ∈ N where pα = n. (5)

Given a sequence of complex numbers z = (z1,z2,z3, . . .) and a multi-index α ∈ N(N)
0 we

write
zα = zα1

1 ×·· ·× zαN
N . (6)

Then a formal power series in infinitely many variables is an expression of the form

∑
α

cαzα ,

where the sum is over all multi-indexes α ∈ N(N)
0 and each cα is a complex number. We

denote by P the set of all formal power series and D the set of all formal Dirichlet series
(note that we are not assuming any kind of convergence whatsoever). Then the relation (5)
defines a mapping B, which will be called the Bohr transform:

B : P −−−−−−−−−→ D

∑α cαzα
cα=apα

−−−−−→ ∑n an
1
ns

This is easily checked to be a bijective algebra homomorphism. Then, every problem on
the side of Dirichlet series has an immediate translation in the side of power series. There
should then be a problem stated in terms of absolute convergence of power series in infin-
itely many variables that corresponds to Bohr’s absolute convergence problem. Let us find
out what it is.
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60 DANIEL CARANDO AND PABLO SEVILLA-PERIS

Our aim was to get closer to functional analysis and we rephrased the problem in (3)
involving a Banach space of Dirichlet series. Our first goal now is to describe the pre-
image of this Banach space through the Bohr transform. Let us begin by noting that power
series on finitely many variables define holomorphic functions, and the natural domains of
convergence of such series are polydisks. Then the natural norm to consider on CN in this
context is the sup–norm (the unit ball being the unit polydisk), rather than the Euclidean
norm. Then, when jumping to infinitely many variables, it is reasonable to consider the
space c0 (which is endowed with the sup–norm) and take its open unit ball

Bc0 =
{

z = (z1,z2, . . .) : |z j|< 1 for all j and |z j| → 0
}

as the natural setting to consider power series in infinitely many variables.
A function f : Bc0 → C is holomorphic if it is Fréchet differentiable at every point.

Each holomorphic function on Bc0 has an associated family of coefficients: given α =
(α1,α2, . . . ,αN ,0,0, . . .) consider fN the restriction to CN ×{0}, which is a holomorphic
function in N variables and hence has a monomial series expansion; take then cα( f ) =
cα( fN). Then holomorphic functions on Bc0 define formal power series (we write f ∼
∑α cα( f )zα ). Then the Banach space

H∞(Bc0) = { f : Bc0 → C : f is holomorphic and bounded}
(endowed with the norm ‖ f‖= supz∈Bc0

| f (z)|) can be seen as a subset of P. Then the ideas
of Bohr give the following fundamental theorem.

Theorem 1 (see Bohr [5], and also Hedenmalm-Lindqvist-Seip [15]). Bohr’s transform B
is an isometric isomorphism between H∞(Bc0) and H∞.

Why could such a result be of any use to Bohr in order to face his absolute convergence
problem? To understand this let us point out that, unlike power series in finitely many
variables that converge at every point on a certain polydisk, power series of holomorphic
functions on Bc0 do not necessarily converge. This was shown by Toeplitz, who gave in
[17] an example of a function in H∞(Bc0) with a power series such that for every ε > 0
there exists z ∈ `4+ε ∩Bc0 for which the power series does not converge absolutely. So then
a natural question now is to ask for which z’s do we have that the formal power series of
every function in H∞(Bc0) converge.

Take f ∈ H∞(Bc0) and let ∑α cα( f )zα be its associated power series. If z ∈ Bc0 satisfies
∞

∑
j=1
|z j|< ∞ ,

then we can show that
∑

α∈N(N)
0

|cα( f )||z|α < ∞ .

In other words, for z ∈ `1∩Bc0 , the power series of every function in H∞(Bc0) is absolutely
convergent at z. What happens if we change `1 for some other `r? Let us define

M = sup
{

r : ∑
α

|cα( f )||z|α < ∞ for z ∈ `r ∩Bc0 and f ∈ H∞(Bc0)
}
.

Then Toeplitz’s example and what we have just noted give 1≤M ≤ 4.
Then the power series counterpart of Bohr’s absolute convergence problem is given by

the following deep result of Bohr [4, Satz IX]:

S =
1
M

.
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Working with power series, Bohr was able to show [4, Satz III] that M ≥ 2. On the other
hand, as we have already mentioned, Toeplitz’s example gives M ≤ 4. This gives 1/4 ≤
S≤ 1/2, and that is what was known on the subject in 1913. . . and so it remained for some
time.

Let us take a systematic approach to the problem. Let 1≤ q<∞, then Hölder’s inequality
gives:

∑
α∈N(N)

0

|cα ||z|α ≤

 ∑
α∈N(N)

0

|cα |q
1/q ∑

α∈N(N)
0

(|z|q′)α

1/q′

It can be seen that the last series converges if and only if z ∈ `q′ (note that the α’s are
multi-indexes). This then gives the following.

Theorem 2. Let F ⊆ H∞(Bc0) be such that the coefficients of all f ∈F are q-summable.
Then, ∑α |cα( f )| |z|α < ∞ for every z ∈ `q′ ∩Bc0 and every f ∈F .

One could naïvely expect that for some q a result like the following one holds:

The coefficients of any function in H∞(Bc0) are q-summable.

This would imply M ≥ q′, and then S≤ 1/q′ = 1−1/q. Furthermore if we were able to find
the optimal value of q, this would give us the equality. Unfortunately, such a result does not
hold. . .

However, a similar result holds if we just consider homogeneous polynomials. That was
the (not naïve at all) approach of Bohnenblust and Hille [3], who finally settled the problem
in 1931. In order to present their results, some definitions are needed.

Given an m-linear map A : c0×·· ·× c0→ X , the mapping

P : c0→ X given by P(z) = A(z, . . . ,z)

is called an m-homogeneous polynomial. Of all m-linear maps defining a polynomial P,

there exists only one that is symmetric, which we denote by
∨
P.

If we write each z ∈ c0 as z = ∑i ziei, then we have

P(z) =
∨
P
(

∑i ziei, . . . ,∑i ziei
)
= ∑

i1

· · ·∑
im

∨
P (ei1 , . . . ,eim)zi1 · · ·zim .

So, every m-homogeneous polynomial defines a family of coefficients through the associ-
ated m-linear mapping. On the other hand, an m-homogeneous polynomial is a holomorphic
mapping defined on c0 and hence defines a formal power series

P∼ ∑
α1+α2+···=m

cα(P)zα .

Both families of coefficients
( ∨

P (ei1 , . . . ,eim)
)

i1,...,im
and

(
cα(P)

)
α

are closely related, but
different. In fact, for α = (α1, . . . ,αn,0, . . .) one has

cα(P) =
m!

α1! · · ·αn!
∨
P (e1, α1. . .,e1,e2, α2. . .,e2, . . . ,en, αn. . .,en) . (7)

Bohnenblust and Hille proved in [3] a fundamental result on the coefficients of a polyno-
mial.
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62 DANIEL CARANDO AND PABLO SEVILLA-PERIS

Theorem 3 (Bohnenblust–Hille inequality). There is a constant C > 0 such that for each
m-homogeneous polynomial P : c0→ C we have(

∑
i1,...,im

|
∨
P (ei1 , . . . ,eim)|

2m
m+1

)m+1
2m ≤Cm sup

z∈Bc0

|P(z)|

and the exponent is optimal.

As an immediate consequence of this inequality and the optimality of the exponent,
Bohr’s absolute convergence problem is finally solved.

Corollary 4 (Bohr–Bohnenblust–Hille).

S = 1/2 = lim
m→+∞

1− m+1
2m

.

Let us note that from Theorem 3 and (7) we easily have that the coefficients
(
cα(P)

)
α

are
m+1
2m -summable. Then since for q = 2m

m+1 we have 1/q′ = 1− m+1
2m , the spirit of Theorem 2,

which could be summarized as: if coefficients are q-summable, then S has to do with 1/q′

lays behind this result.

2. VECTOR-VALUED SETTING

An expression of the form

D = ∑
n

an
1
ns

makes sense when the coefficients an belong to a Banach space X . Again, convergence
takes place in half-planes and it makes sense to ask about the maximal width of the band on
which a Dirichlet series may converge uniformly but not absolutely. Using Hahn-Banach
Theorem and working a little bit one can see that Bohr’s fundamental theorem, i.e. σu = σb,
holds also in the vector valued case [9, Proposition 2]. Therefore it is natural to define
H∞(X) as the space of all Dirichlet series D with coefficients in X which define bounded
and holomorphic functions on Res > 0. The question is, now, to determine

S(X) = sup{σa(D) : D ∈H∞(X)} . (8)

The Bohnenblust–Hille inequality (Theorem 3) is one of the main ingredients in the final
solution of Bohr’s problem in the scalar case (Corollary 4). We will need then an analogous
result for vector-valued polynomials. But before we go into that question let us recall that a
Banach space has cotype q (see e.g. [12, Chapter 11]) if there exists a constant C > 0 such
that for every finite choice of elements x1, . . . ,xN ∈ X( N

∑
k=1
‖xk‖q

)1/q
≤C

(∫ 1

0

∥∥∥ N

∑
k=1

rk(t)xk

∥∥∥2
dt
)1/2

,

where rk is the k-th Rademacher function. We will denote q(X) for the infimum over all q’s
such that X has cotype q. This number is well known for many classical Banach spaces, for
example, if X = Lp(µ), then

q(X) =

{
2 1≤ p≤ 2
p 2≤ p

.

Once we have this definition, that is related to the geometry of the space, we can state the
result we need.

Actas del XII Congreso Dr. Antonio A. R. Monteiro (2013), 2014



ON THE CONVERGENCE OF SOME CLASSES OF DIRICHLET SERIES 63

Theorem 5 (Bombal–Pérez-García–Villanueva [6]). If X has cotype q, then there is a con-
stant CX > 0 such that for each m-homogeneous polynomial P : c0→ X,(

∑
i1,...,im

‖
∨
P (ei1 , . . . ,eim)‖q

)1/q
≤Cm

X sup
z∈Bc0

‖P(z)‖.

Coming from this result to the description of S(X) is by no means trivial. It requires to
translate S(X) into a problem on absolute convergence of power series on infinitely many
variables and with values on X and then study the set of points for which every such power
series converges absolutely. This needs deep results on the theory of summing operators.
This work was done by Defant, García, Maestre and Pérez-García in [9], where they prove
that

S(X) = 1− 1
q(X)

.

2.1. Hardy spaces. We have seen that, via Bohr’s transform, power series in infinitely
many variables and Dirichlet series are very much connected to each other. Given a Banach
space X , a vector valued version of Bohr’s transform can be defined in a natural way.

Holomorphic functions on Bc0 led to the space H∞. Another natural ‘source’ of power
series is to consider Fourier series, and this leads us to Hardy spaces, that define natural
spaces of Dirichlet series. This was first considered by Bayart in [2] for scalar valued
Dirichlet series. We introduce them directly in the vector valued case.

For the torus T = {z ∈ C : |z| = 1} and the N-dimensional polytorus TN = ∏
N
k=1T the

Hardy spaces Hp(T) and Hp(TN) are very well known spaces of functions that can be de-
fined either as radial limits of holomorphic functions or as subspaces of the corresponding
Lp space. In order to define Hardy spaces of X-valued functions on infinitely many variables
we take the second point of view.

We denote by dw the normalized Lebesgue measure on the infinite dimensional polytorus
T∞ = ∏

∞
k=1T, i.e. the countable product measure of the normalized Lebesgue measure on

T. For any multi-index α = (α1, . . . ,αn,0, . . .) ∈ Z(N) (all finite sequences in Z) the α-th
Fourier coefficient f̂ (α) of f ∈ L1(T∞,X) is given by

f̂ (α) =
∫
T∞

f (w)w−αdw .

Then, given 1 ≤ p < ∞, the X-valued Hardy space on T∞ is the subspace of Lp(T∞,X)
defined as

Hp(T∞,X) =
{

f ∈ Lp(T∞,X)
∣∣ f̂ (α) = 0 , ∀α ∈ Z(N) \N(N)

0

}
. (9)

Assigning to each f ∈ Hp(T∞,X) its unique formal power series ∑α f̂ (α)zα we may con-
sider Hp(T∞,X) as a subspace of P(X), the set of formal power series in X . Consider the
X-valued Bohr transform BX given by:

FORMAL POWER SERIES IN X DIRICHLET SERIES IN X
P(X) −−−−−−−−−→ D(X)

∑α cαzα
cα=apα

−−−−−→ ∑n an
1
ns⋃

Hp(T∞,X)
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64 DANIEL CARANDO AND PABLO SEVILLA-PERIS

Then the Hardy space Hp(X) of Dirichlet series in X is defined as the image of Hp(T∞,X)
under the Bohr transform BX . This vector space of Dirichlet series together with the norm

‖D‖Hp(X) = ‖B−1
X (D)‖Hp(T∞,X)

forms a Banach space. In other words, Bohr’s transform BX gives the identification

Hp(X) = Hp(T∞,X) ,1≤ p < ∞.

We remark that, for p = ∞, this identification also defines a Banach space H∞(X) which
in the scalar case X = C coincides with the one given above. However, these two ways of
defining H∞(X) are different for arbitrary X .

There is also a definition of Hp(X) which does not rely on Bohr’s transform. For each
finite Dirichlet polynomial D = ∑

N
k=1 akn−s, define its Hp(X)-norm as:

‖D‖Hp(X) = lim
T→∞

( 1
2T

∫ T

−T

∥∥∥ n

∑
k=1

ak
1
nt

∥∥∥p

X
dt
)1/p

.

By the Birkhoff–Khinchine ergodic theorem, the completion of the space of Dirichlet poly-
nomials with this norm is our space Hp(X) (see e.g. Bayart [2] for the scalar case, the
vector-valued case follows exactly the same way).

Motivated by (4) we define for D ∈D(X) and 1≤ p < ∞

σHp(X)(D) := inf
{

σ ∈ R
∣∣ ∑

n

an

nσ

1
ns ∈Hp(X)

}
,

and motivated by (8) we consider

Sp(X) := sup
D∈D(X)

σa(D)−σHp(X)(D) = sup
D∈Hp(X)

σa(D)

(for the second equality use again a simple translation argument). A result of Bayart [2]
shows that for every 1≤ p < ∞

Sp(C) =
1
2
. (10)

As observed by Helson [14], this result is somehow surprising, since H∞(C) is much
smaller than Hp(C).

Our aim is to give a vector valued counterpart of Bayart’s result. As it happened in the
previous cases, we need a sort of Bohnenblust–Hille type of inequality. It is the following
result from [7]. Note that, since

∫
TN ‖P(z)‖dz≤ supz∈Bc0

‖P(z)‖, it implies Theorem 5.

Theorem 6. If X has cotype q, then there is a constant C > 0 such that, for each m-
homogeneous polynomial P : CN → X, and every N ∈ N,( N

∑
i1,...,im=1

‖
∨
P (ei1 , . . . ,eim)‖q

)1/q
≤Cm

X

∫
TN
‖P(z)‖dz.

Letting N→+∞, the integral on the right hand side goes to the norm of the polynomial
P in the Hardy space H1(T∞,X). With this, and identifying the space H1(T∞,X) with the
Hardy space of Dirichlet series H1(X), it is possible to prove that S1(X)≤ 1− 1

q(X) . From
the natural containments between Hardy spaces, for 1≤ p≤ ∞ we have

1− 1
q(X)

= S(X)≤ Sp(X)≤ S1(X)≤ 1− 1
q(X)

.

So we have obtained the following.
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ON THE CONVERGENCE OF SOME CLASSES OF DIRICHLET SERIES 65

Theorem 7. Let q(X) be the optimal cotype of the Banach space X. Then, for 1 ≤ p ≤ ∞

we have

Sp(X) = 1− 1
q(X)

.

This result has an immediate translation in terms of absolute convergence of power series.
Indeed, let us define

Mp(X) = sup
{

r : ∑
α

‖cα‖|z|α < ∞ for z ∈ `r ∩Bc0 , f ∈ Hp(Bc0 ,X)
}
.

Corollary 8. For each Banach space X and 1≤ p≤ ∞ we have

Mp(X) =
q(X)

q(X)−1
.

Remark 9. Let us finish this note by observing that, although by (10) the width of the
strip of uniform but not absolute convergence is the same for all spaces Hp(C), the fact
that H∞(C) has fewer Dirichlet series still makes a difference. Since Sp(C) is defined as a
supremum, (10) means that for every ∑n an

1
ns ∈Hp(C) we have

∞

∑
n=1
|an|

1

n
1
2+ε

< ∞, ∀ε > 0.

The question now is: can we even get to ε = 0? (we say in this case that the strip is
attained). Here the difference between H∞(C) and other Hp(C) arises: Theorem 1.1 in [1]
shows that in H∞(C) the strip is attained, whereas in Hp(C) for every 1≤ p < ∞ it is not.
An interesting question could be to study when Sp(X) is attained in this sense.
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