
ACTAS DEL XII CONGRESO
DR. ANTONIO A. R. MONTEIRO (2013)
2014, Páginas 37–40

BESOV REGULARITY OF SOLUTIONS OF THE FRACTIONAL LAPLACIAN

HUGO AIMAR, GASTÓN BELTRITTI, AND IVANA GÓMEZ

ABSTRACT. We review the scope of Dahlke and DeVore method for the analysis of Besov
regularity improvement of solutions of PDEs. We sketch some new results concerning the
case of the fractional Laplacian.

1. INTRODUCTION

The solution of the Dirichlet problem in the unit disc with a continuous boundary con-
dition f is given by u(reiθ ) = (Pr ∗ f )(θ) =

∫ 2π

0 Pr(θ −ϕ) f (ϕ)dθ , where Pr denotes the
Poisson kernel Pr(θ) =

1
2π

1−r2

1−2r cosθ+r2 , 0 < r < 1, and θ ∈ (0,2π). The function u(reiθ )

extended as f (θ) where r = 1 is continuous in the closed disc {|z| ≤ 1}. In the above, the
smoothness of the boundary of the domain does not seem to play a relevant role. Neverthe-
less as the following example shows, not even the boundedness of u can be expected to be

true if the domain has an inner vertex. In fact, the unbounded function u(r,θ) = r−
2
3 sin 2θ

3
solves the Dirichlet problem in the domain D = {(r cosθ ,r sinθ) : 0 < θ < 3π

2 ,0 < r < 1}
with continuous Dirichlet data

f (θ) =

{
sin 2θ

3 , when 0 < θ < 3π

2

0, on the straight line segments of ∂D.
D

When dealing with diffusions, as usual, an improvement of regularity when time grows
could be expected. This is quantitatively true but generally not in a qualitative sense. To
be precise, if D is as before and Ω = D×R+, the function u(r,θ ; t) = J

−2
3
(r)sin 2θ

3 e−t ,

with J
−2

3
the singular Bessel function, solves ∂u

∂ t = ∆u in Ω, u|∂D = f for every t > 0 and

u(r,θ ;0) = J
−2

3
(r)sin 2θ

3 . The order of the singularity, r−
2
3 , in the initial condition close to

the origin remains unchanged along the whole process. The parabolic expected smoothing
effect only reflects in the factor e−t which reduces the size of the singularity at r = 0 but not
its order.

The above considerations are set to wit for the fact that harmonic functions and tempera-
tures in Lipschitz domains can be far from being smooth in classical senses on and through
the boundary of the domain.

Why Besov?
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As it is described in [DD], from the point of view of nonlinear approximation of solu-
tions, Besov becomes a very suitable form of regularity which allows to measure the rate
of convergence. Briefly, for {ψλ : λ ∈ Λ} a wavelet basis, consider the nonlinear manifold
Mn = {S = ∑λ∈Λ aλ ψλ : #(Λ) ≤ n}. The error of approximation of f in the Lp norm by

elements in Mn, given by σn( f ) = infS∈Mn ‖ f −S‖p satisfies that ∑
∞
n=1

[
n

α

d σn( f )p

]τ
1
n is

finite if and only if the function f belongs to the Besov space Bα
τ , with 1

τ
= α

d + 1
p (see

[DJP]). Hence the rate of convergence to zero of σn( f ) when n tends to infinity improves
when α increases.

So that when we are dealing with a certain family of functions f , the knowledge of as
high regularity as possible in the Besov scale measured in terms of the regularity exponent
α , would provide faster convergence of nonlinear approximation.

The classical theories of regularity of solutions to PDEs of elliptic and parabolic type,
seem to give some hope to the idea that if the family of functions f is the family of solutions
of those PDEs, then some Besov regularity improvement can be expected.

That this is actually the case is the main result in [DD], where wavelet techniques are
used in an essential and nontrivial way. The main results are contained in the next two
statements.

Theorem 1 ([DD]). If D is a Lipschitz bounded domain in Rd , 1 < p < ∞, λ > 0, 0 < α <
λd

d−1 , and 1
τ
= 1

p +
α

d , then

H (D)∩Bλ
p(D)⊂ Bα

τ (D),

where H (D) is the space of all harmonic functions defined on D.

Theorem 2 ([JK] + Theorem 1). Let D be a Lipschitz bounded domain in Rd , 1 < p < ∞,
s > 0, a function g in Bs

p(∂D), and u a solution of{
∆u = 0, in D
u = g, in ∂D.

Then u ∈ Bα
τ (D), where 1

τ
= 1

p +
α

d , and 0 < α < (s+ 1
p)

d
d−1 .

2. THE CASE OF TEMPERATURES

The improvement of Besov regularity for harmonic functions on Lipschitz domains ob-
tained by Dahlke and DeVore can be seen as the steady state of a more general result con-
cerning the regularity improvement of temperatures on cylinders based on Lipschitz do-
mains. The theory is developed in [AG1, AG2, AGI2, AGI1].

The next statements gather together the main results of the saga. We shall write Ω to
denote the parabolic cylinder D× (0,T ) with T > 0 and D a bounded Lipschitz domain in
Rd (d ≥ 2). Let Θ(Ω) denote the space of all temperatures u = u(x, t) in Ω. In other words
Θ(Ω) := {u : ∂u

∂ t = ∆u in Ω}.

Theorem 3. Let 1< p<∞, λ > 0, ` the largest integer less than λ +d, 0<α <min{`, λd
d−1},

and 1
τ
= 1

p +
α

d . Then

Θ(Ω)∩Lp((0,T );Bλ
p(D))⊂ Lτ((0,T );Bα

τ (D)).

Moreover, if u is a temperature in Ω we have that

‖u‖Lτ ((0,T );Bα
τ (D)) ≤C‖u‖Lp((0,T );Bλ

p (D))

for some constant C depending on Ω, d, p and λ .
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Theorem 4. Let D be a bounded and Lipschitz domain contained in Rd and let T > 0
be given. Let Ω = D× (0,T ) be the associated parabolic domain. Then there exists a
positive number ε ≤ 1 depending only on D such that a solution of the initial-boundary
value problem 

∂u
∂ t = ∆u, in Ω

u(x, t) = f (x), for (x, t) ∈ ∂D× (0,T )

u(x,0) = g(x), for x ∈ D

belongs to the parabolic Besov space Bα
τ (Ω) with 0 < α < min

{
d p−1

p ,(s+ 1
p)

d
d−1

}
and

1
τ
= α

d + 1
p , provided that f ∈ Bs

p(∂D) and g ∈ B
s+ 1

p
p (D) for each p and each s with (s, 1

p) ∈
Rε , given by

s

1
p

1

1

ε

ε

2 Rε

1− ε

2
<

1
p
<

1+ ε

2
and 0 < s < 1;

1+ ε

2
≤ 1

p
< 1 and

2
p
−1− ε < s < 1;

0 <
1
p
≤ 1− ε

2
and 0 < s <

2
p
+ ε.

3. THE CASE OF SOLUTIONS OF THE FRACTIONAL LAPLACIAN

From the Fourier analysis point of view the nonlocal differential operator of order 2σ

(0 < σ < 1), (−4)σ is defined as ((−4)σ f )∧(ξ ) = |ξ |2σ f̂ (ξ ), ξ ∈ Rd . Since this oper-
ator is of convolution type with a distribution with support on the whole space Rd , a small
and localized perturbation f̃ of f at any region of the space is registered everywhere by
(−4)σ f̃ . It is in this sense that the nonlocality of (−4)σ can be realized. Hence for D a
Lipschitz domain in Rd the fact that u is a solution of (−4)σ u = 0 on D has a completely
different sense when 0 < σ < 1 than when σ = 1. The most relevant recent result regarding
this theory and its applications is provided by the Dirichlet to Neumann point of view intro-
duced by Caffarelli and Silvestre in [CS]. In the case σ = 1 the solutions are the harmonic
functions in D and this property depends only on the values of u in D. In fact, harmonic
functions are those that satisfy a mean value formula for small balls contained in D. Nev-
ertheless, the above mentioned nonlocal properties of (−4)σ when 0 < σ < 1 show that a
small perturbation ũ of u outside D could give that (−4)σ ũ 6= 0 on D. Since mean value
formulas are a central tool in Dahlke and DeVore theory and its extensions, those nonlocal
behaviours of solutions seem to indicate that no mean value for solutions of (−4)σ u = 0
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can be true. Except, perhaps, if such mean value formulas would themselves be nonlocal. It
turns out that this is precisely the case.

The main results in this direction are the following two statements. Their proofs can be
found in [ABG].

Theorem 5. Let 0 < σ < 1 be given. Assume that D is an open set in Rd on which
(−4)σ f = 0. Then for every x ∈ D and every 0 < r < dist(x,∂D) we have that f (x) =
(Φr ∗ f )(x), where Φr(x) = r−dΦ

( x
r

)
, Φ(x) =

∫
y∈R

∫
z∈Rd ϕ(z,−y)Pa

|y|(x − z)|y|a dzdy,

ϕr(x,y) = r−(d+1+a)ϕ
( x

r ,
y
r

)
, ϕ is a C∞(Rd+1) radial function supported in the unit ball

of Rd+1 with
∫∫

Rd+1 ϕ(x,y)|y|a dxdy = 1, and Pa
y is a constant times y1−a

(
|x|2 + y2

)− d+1−a
2

where a = 1−2σ .

Theorem 6. Let D be a bounded Lipschitz domain in Rd . Let 0 < σ < 1, 1 < p < ∞, and
0< λ < d−1

d be given. Assume that f ∈Bλ
p(Rd) and that (−4)σ f = 0 on D, then f ∈Bα

τ (D)

with 1
τ
= 1

p +
α

d and 0 < α < λ
d

d−1 .

Aside from the mean value property in Theorem 5, the analytical tools involved in the
proof of Theorem 6 are the characterization of Besov spaces through wavelets ([Mey]),
Poincaré inequalities, Calderón maximal functions and Besov regularity ([Cal, DS]).
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