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EMBEDDING THE UNITARY DUAL OF GL(n,C) INTO STANDARD
BEILINSON–BERNSTEIN MODULES

TIM BRATTEN AND MARÍA CRISTINA CARRERAS DE DARGOLTZ

ABSTRACT. In 1986 David Vogan classified the irreducible unitary representations for a
general linear group defined over an Archimedean field. In this manuscript we focus on the
case of the complex general linear group and show how to embed the irreducible unitary
representations constructed by Vogan into certain standard Beilinson–Bernstein modules.
In the generic case our embedding realizes Vogan’s classification of the unitary dual in
terms of the Beilinson–Bernstein classification for irreducible admissible representations.

1. INTRODUCTION

By definition, the unitary dual of a group is the set of equivalence classes of irreducible
unitary representations. A fundamental unsolved problem in the theory of reductive Lie
groups is how to classify the unitary dual. However, specific classifications of the unitary
dual are known for certain families of reductive Lie groups. For example the unitary dual
of the general linear group GL(n,F) where F is the real numbers, the complex numbers or
the quaternions, was classified by Vogan in [12].

For a compact group, it is known that an irreducible representation is finite dimensional
and carries an invariant inner product. Suppose G0 is a reductive Lie group and K0 ⊆ G0
is a maximal compact subgroup. A classical result of Harish-Chandra [5] shows that the
irreducible K0-submodules in an irreducible unitary representation for G0 have finite mul-
tiplicities. This naturally leads to the following concept: a representation for G0 is called
admissible if the multiplicities of all irreducible K0-subrepresentations are finite. Harish-
Chandra’s work shows that the unitary dual of G0 is naturally included in the set of equiva-
lence classes of irreducible admissible representations.

Classifying the irreducible admissible representations has turned out to be much more
tractable than the problem of the unitary dual. The first classification, based on the work of
Harish-Chandra, was proposed by R. Langlands in the mid 1970s [8]. By now there are sev-
eral different classifications of irreducible admissible representations, including a geometric
version due to A. Beilinson and J. Bernstein [1], that uses a theory of homogeneous sheaves
of twisted differential operators (TDOs) on the flag variety of the associated complex Lie
algebra.

Typically, the constructions of irreducible unitary representations used in known exam-
ples of the unitary dual differ from the constructions of standard modules used in the clas-
sification of irreducible admissible representations. Thus it can be an interesting exercise to
see how a given classification for the unitary dual relates to the classification of irreducible
admissible representations. In her Master’s thesis, C. Carreras de Dargoltz investigated the
relation between Vogan’s classification for the unitary dual of GL(n,C) and the Beilinson–
Bernstein classification of irreducible admissible representations. In particular, she showed
how to embed the irreducible unitary representations constructed by Vogan for GL(n,C),
into certain standard modules used in the Beilinson–Bernstein classification. In the generic
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case, her result realizes the irreducible unitary modules defined by Vogan as unique irre-
ducible submodules associated to specific classifying modules. However, the problems that
can occur are twofold: first of all it can occur that the associated parameter we define isn’t
antidominant, and secondly, even if this parameter is antidominant, in the singular case it
can occur that the standard module isn’t a classifying module. The purpose of this manu-
script is to state and prove the embedding result established in the thesis. In a future manu-
script we will demonstrate the full result which we will frame in the more general context of
a problem about how to relate certain unitary representations realized by the cohomological
parabolic induction to the Beilinson–Berstein classification.

We now review a few general facts about representations for a reductive Lie group G0 of
Harish-Chandra class [6] with maximal compact subgroup K0. Let g0 denote the Lie algebra
of G0 and let g denote the complexification of g0. We can define a (complex) representa-
tion as a continuous linear action of G0 in a complete locally convex (complex) topological
vector space V . The representation is called irreducible if V 6= {0} and if the only closed in-
variant subspaces are {0} and V . The representation is said to be unitary when V is a Hilbert
space and the Lie group acts by unitary (that is: norm preserving) operators. Two unitary
representations are said to be equivalent if there is an equivariant isometry from one repre-
sentation onto the other. By definition, the unitary dual is the set of equivalence classes of
irreducible unitary representations. For a compact Lie group, one knows that the irreducible
representations are finite-dimensional and that every finite-dimensional representation has
an inner product in which the group acts by unitary operators.

A vector in a G0-representation is called K0-finite if the span of the corresponding K0-
orbit is finite-dimensional. The G0-representation V is called admissible if the multiplicity
of each irreducible K0-representation in V is finite. As mentioned above, Harish-Chandra
has shown than an irreducible unitary representation is admissible. In general, the set of
K0-finite vectors VK0 ⊆ V forms a dense K0-invariant subspace but when V is admissible
then every K0-finite vector is differentiable (a vector v ∈V is called differentiable if

lim
t→0

exp(tξ ) · v− v
t

exists for each ξ ∈ g0). It follows that the K0-module VK0 carries a compatible g-action
obtained via complexifying the differentiation. The resulting (g,K0)-module VK0 is called
the Harish-Chandra module of V . One can prove, for example, that V is an irreducible
representation if and only if VK0 is an irreducible (g,K0)-module. If V and W are admissible
representations with corresponding Harish-Chandra modules VK0 and WK0 then an infini-
tesimal morphism from V to W is a (g,K0)-equivariant linear map from VK0 to WK0 . Two
admissible representations are called infinitesimally equivalent (or just: equivalent) if there
exists an isomorphism of their underlying Harish-Chandra modules. A fundamental result
of Harish-Chandra [5] says that if two irreducible unitary representations have isomorphic
Harish-Chandra modules then they are equivalent unitary representations. Thus the unitary
dual of G0 embeds naturally into the set of equivalence classes of irreducible admissible
representations.

In this study we will sketch Vogan’s classification of the unitary dual for GL(n,C), review
the Beilinson–Bernstein classification of irreducible admissible representations, and then
relate these two classifications, utilizing the duality theorem of Hecht, Miličić, Schmid and
Wolf [7].

Actas del XI Congreso Dr. Antonio A. R. Monteiro (2011), 2012



Embedding the unitary dual of GL(n,C) into standard Beilinson–Bernstein modules 131

2. VOGAN’S CLASSIFICATION

2.1. Lowest K0-type. In this section we consider Vogan’s classification for the unitary dual
of G0 = GL(n,C). Details are taken from his article [12]. Let K0 = U(n) be the maximal
compact subgroup of unitary matrices. The classification hinges on the Cartan–Weyl param-
etrization of the unitary dual for K0, so we begin with that. Let g0 denote the Lie algebra
of GL(n,C) and let k0 denote the Lie algebra of K0. Thus g0 = k0⊕ ik0. Later on in this
article, we will need to take care to distinguish the complexification of k0 from g0, but for
the time being we ignore this. A finite-dimensional representation of G0 is called holomor-
phic if the derivative is complex linear on g0. There is a natural correspondence, given by
extension and restriction, between the irreducible representations of K0 and the irreducible
(finite-dimensional) holomorphic representations of G0 and we make this identification in
what follows.

By definition, a Borel subgroup of GL(n,C) is a maximal connected solvable subgroup.
One knows every Borel subgroup of GL(n,C) is conjugate to the subgroup B0 of invertible
upper triangular matrices. Let T0 be the maximal torus of diagonal matrices in K0. The
group of characters of T0 is naturally identified with the additive group Zn of n-tuples of
integers. In particular, put C∗=GL(1,C) and let (m1, . . . ,mn)∈Zn. Then the corresponding
character χ : T0→ C∗ is defined by

χ


z1 0 · · · 0

0 z2 0
...

... 0
. . . 0

0 · · · 0 zn

= zm1
1 zm2

2 · · ·z
mn
n .

We write χ = (m1, . . . ,mn)∈ Zn. This character (or weight) is called dominant (with respect
to the Borel subgroup B0) if

m1 ≥ m2 ≥ ·· · ≥ mn.

There is a natural correspondence, given by extension and restriction, between the charac-
ters of T0 and the holomorphic characters of B0. Now suppose V is an irreducible repre-
sentation for K0. Then one knows that there is a unique character of B0 which appears in
the corresponding holomorphic G0-action on V and that this character is dominant. The
character is called the highest weight in V . On the other hand, one can prove each domi-
nant weight appears as the highest weight in exactly one irreducible K0-module. Thus the
Cartan–Weyl theory parametrizes the equivalence classes of irreducible K0-modules with
dominant weights. We parametrize the unitary dual K̂0 of K0 via the dominant weights.

Vogan uses the Cartan–Weyl classification to define an order on K̂0 in the following way.
Consider the natural form

〈•,•〉 : Zn×Zn→ Z
defined on the group of characters of T0 given by

〈( j1, j2, . . . , jn),(k1,k2, . . . ,kn)〉= j1k1 + j2k2 + · · ·+ jnkn.

Let b0 be the Lie algebra of the Borel subgroup B0 and put

sl(n,C) = [g0,g0] .

Then the adjoint action of K0 in sl(n,C) defines an irreducible representation of K0. Let 2ρ

denote the highest weight of that representation. Thus 2ρ is the sum of the weights for the
adjoint action of T0 in b0. According to our identifications

2ρ = (n−1,n−3,n−5, . . . ,1−n).

Actas del XI Congreso Dr. Antonio A. R. Monteiro (2011), 2012



132 Tim Bratten, María Cristina Carreras de Dargoltz

For µ ∈ K̂0 we define
‖µ‖= 〈µ +2ρ,µ +2ρ〉 .

Now suppose V is an irreducible unitary representation for G0 and let VK0 be the underlying
Harish-Chandra module. Since V is admissible, as a K0-module

VK0
∼=
⊕

µ∈K̂0

m(µ)Vµ ,

where Vµ is a realization of the irreducible representation with highest weight µ and m(µ)
is a nonnegative integer characterizing the multiplicity of µ in VK0 . We say µ is a K0-type
of V if m(µ) 6= 0. A K0-type µ of V is called minimal if

‖µ‖ ≤ ‖λ‖ for every other K0-type λ of V.

Vogan proves the following.

Theorem 2.1. Suppose V is an irreducible unitary representation for GL(n,C). Then V has
a unique minimal K0-type and that minimal K0-type has multiplicity one in V .

The unique minimal K0-type of an irreducible unitary representation for GL(n,C) will
be called the lowest K0-type.

2.2. The almost spherical representations of GL(n,C). According to the previous theo-
rem, the unitary dual of GL(n,C) is partitioned by lowest K0-types. Vogan’s parametriza-
tion of the irreducible unitary representations of GL(n,C) with lowest K0-type µ = (m1, . . . ,

mn) ∈ K̂0 is framed in terms of a classification for a certain type of irreducible unitary rep-
resentation, called an almost spherical representation, which is associated to a specific
reductive subgroup, whose definition depends on µ . In case µ has the form

µ = (m,m, . . . ,m)

then the lowest K0-type is a character, the associated reductive subgroup is G0 and we
are looking at Vogan’s classification of the irreducible almost spherical representations of
GL(n,C). In this section we consider that classification.

By definition, a parabolic subgroup of GL(n,C) is a subgroup that contains a Borel
subgroup. We can characterize the parabolic subgroups that contain the Borel subgroup B0
in the following way. We define a partition of n to be a finite sequence n1,n2, . . . ,nk of
positive integers such that

n1 +n2 + · · ·+nk = n.
Each partition defines a reductive subgroup

L0 = GL(n1,C)×GL(n2,C)×·· ·×GL(nk,C)
embedded along the diagonal. The subgroup P0 generated by L0 and B0 is the associated
parabolic subgroup and there is a bijection between the partitions of n and the parabolic
subgroups of G0 that contain B0. The subgroup L0 is a maximal reductive subgroup of P0
and will be called the associated Levi subgroup.

We parametrize the unitary characters of G0 = GL(n,C) in the following way. For
(t,m) ∈ R×Z define χ : GL(n,C)→ C∗ by

χ(A) = |det(A)|it
(

det(A)
|det(A)|

)m

.

We call χ a unitary character of type m∈Z. Observe that when A∈U(n) then |det(A)|= 1
so there is a family of unitary characters of G0 which restrict to a given unitary character of
K0.
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We define a spherical representation of G0 = GL(n,C) to be a unitary representation for
which the trivial K0-type has non-zero multiplicity (for example: the trivial representation
of G0). A unitary representation V will be called almost spherical of type m ∈ Z if there
exists a unitary character χ of G0 of type m such that

χ
−1⊗V is spherical.

In the case of GL(n,C), the concept of an almost spherical is equivalent to the condition
that there is a K0-type in the representation which is a character, but we emphasize that
for a general reductive group that isn’t the case. At any rate, we now consider Vogan’s
construction of the irreducible almost spherical representations for GL(n,C). We begin with
a partition

n1 +n2 + · · ·+nk = n.

To avoid some repetitions in the construction [12, Theorem 3.8 ], we can assume the parti-
tion is decreasing, that is:

n1 ≥ n2 ≥ ·· · ≥ nk.

This defines a Levi subgroup

L0 = GL(n1,C)×GL(n2,C)×·· ·×GL(nk,C)

and a parabolic subgroup P0, as defined before. We define an almost spherical character χ

of type m for L0 to be one that can be written as a product

χ = χ1 ·χ2 · · · · ·χk,

where
χ j : GL(n j,C)→ C∗

is a unitary character of type m, or else when n j = n j+1 we include the possibility that

χ j(A) = |det(A)|2t
γ(A) and χ j+1(B) = |det(B)|−2t

γ(B)

for 0 < t < 1
2 , and where

γ : GL(n j,C)→ C∗

is a unitary character of type m. This last possibility corresponds to what is known as
the Stein complementary series (in particular, the characters χ j and χ j+1 are not unitary).
We remark that that character χ uniquely extends to the parabolic subgroup P0 so we also
speak of an almost spherical character χ of type m for P0. Vogan uses these characters
and the classical normalized parabolic induction to produce the irreducible almost spherical
representations of G0. First we review the classical parabolic induction and then we give a
precise statement of Vogan’s result.

The normalized parabolic induction incorporates a character that depends on the associ-
ated parabolic subgroup P0. In particular let p0 be the Lie algebra of P0. Then the nilradical
u0 of p0 is the largest solvable ideal in [p0,p0]. It consists of the matrices in p0 whose en-
tries are zero in all the blocks defining L0. The ideal u0 is invariant under conjugation by
matrices from P0 and this defines a holomorphic representation

π : P0→ GL(u0)

where GL(u0) is the general complex linear group of u0. We define the corresponding
half-density character by

δ (A) =
√
|detπ(A)|, for A ∈ P0.
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Again we emphasize we are referring to the determinant of the complex linear transfor-
mation π(A). We define the normalized parabolic induction IG0

p0
(χ) to be the space of

continuous functions

f : G0→ C such that f (gp) = χ
−1(p)δ−1(p) f (g), for g ∈ G0 and p ∈ P0.

Since G0 = K0 ·P0, the sup-norm on K0 makes I(χ) into a Banach representation. When χ is
a special spherical character then the Haar integral over K0 determines a G0-invariant inner
product and the resulting representation is infinitesimally equivalent to an almost spheri-
cal representation. These unitary representations are called the induced almost spherical
representations. Vogan’s result is the following.

Theorem 2.2. Maintain the previous notations.
(a) The only isomorphisms among the induced almost spherical representations come

from permutations of blocks.
(b) The induced almost spherical representations are irreducible.
(c) Any irreducible almost spherical representation is equivalent to an induced almost

spherical representation.

2.3. The parametrization of the unitary dual of GL(n,C). Given µ ∈ K̂0 we now want to
describe how Vogan parametrizes the irreducible unitary representations of G0 with lowest
K0-type µ . Suppose µ = (m1, . . . ,mn). Then we associate a partition of n (and thus a Levi
subgroup) to µ in the following way. Let n1 be the length of the first constant subsequence
of the sequence (m1, . . . ,mn), n2 the length of the second constant subsequence, and so on.
This defines a partition

n = n1 +n2 + · · ·+nk.

Thus we have an associated Levi subgroup

L0 = GL(n1,C)×GL(n2,C)×·· ·×GL(nk,C).
For example, if n = 7 and µ = (6,6,5,0,0,0,−3) then n1 = 2, n2 = 1, n3 = 3 and n4 = 1.
Therefore

L0 = GL(2,C)×GL(1,C)×GL(3,C)×GL(1,C).
What Vogan’s classification does is relate the family of irreducible almost spherical rep-
resentations for L0 of type µ to the irreducible unitary representations of G0 with lowest
K0-type µ . In particular, the irreducible almost spherical representations for L0 of type µ

parametrize the irreducible unitary representations of G0 with lowest K0-type µ . We now
explicitly consider these parameters.

Suppose n1 + n2 + · · ·+ nk = n is the partition associated to µ and let L0 be the cor-
responding Levi subgroup. As before B0 ⊆ G0 is the Borel subgroup of upper triangular
invertible matrices. Then B0∩L0 is a Borel subgroup of L0 and the parabolic subgroups of
L0 that contain B0∩L0 are exactly the subgroups of the form P0∩L0 where P0 is a parabolic
subgroup of G0 that contains B0. We let D0 be a parabolic subgroup of L0 that contains
B0 ∩L0. In a natural way, D0 induces a parabolic subgroup on each sub-block GL(n j,C)
of L0 and we write this associated subgroup as D0∩GL(n j,C). To avoid some repetitions,
we can assume that D0 is such that D0∩GL(n j,C) is associated to decreasing partitions on
each sub-block GL(n j,C) of L0. In order to define a special spherical character χ of D0
of type µ observe that we can think of the sequence µ = (m1, . . . ,mn) as being constant on
the corresponding block n j (this is essentially how we define the partition) and we let q j
denote this integer value. Then we define an almost spherical character χ of D0 of type
µ = (m1, . . . ,mn) to be one that can be written as a product

χ = χ1 ·χ2 · · · · ·χk
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where each
χ j : D0∩GL(n j,C)→ C∗

is an almost spherical character of type q j for the parabolic subgroup D0 ∩GL(n j,C) of
GL(n j,C). Indeed, the integer values q j define a character for the maximal compact sub-
group

U0 =U(n1)×U(n2)×·· ·×U(nk) of L0

and thus we can speak of the almost spherical representations of L0 of type µ . In particular,
inducing parabolically

IL0
D0
(χ)

from an almost spherical character χ of type µ produces an almost spherical representation
of L0 of type µ . These are the induced almost spherical representations for L0.

Vogan’s result (generalized from the case of each block) says that these induced almost
spherical representations are irreducible and that every irreducible almost spherical repre-
sentation of L0 of type µ is isomorphic to one produced in this way. We also know that the
only isomorphisms that occur arise from permutations of blocks.

Using this classification of irreducible almost spherical representations, Vogan parame-
trizes the irreducible unitary representations of GL(n,C) with lowest K0-type µ as follows.

Theorem 2.3. Let µ ∈ K̂0 and suppose L0 is the associated Levi subgroup. Then there
exists a one-to-one correspondence between the equivalence classes of irreducible almost
spherical representations of type µ for L0 and the equivalence classes of irreducible unitary
representations of G0 with lowest K0-type µ .

When µ has the form µ = (m,m, . . . ,m) then L0 = G0 and the representations parame-
trized are just the irreducible almost spherical for G0 of type m from the previous subsection.
When L0 6= G0 then Vogan uses a certain cohomological induction functor to produce irre-
ducible unitary representations for G0 from the irreducible almost spherical representations
for L0. In the following subsection we consider this functor.

2.4. Cohomological parabolic induction. By definition, a Borel subalgebra of a complex
Lie algebra g is a maximal solvable subalgebra and a parabolic subalgebra is a subalgebra
that contains a Borel subalgebra. In order to define the cohomological parabolic induction
we will be interested in the following sort of parabolic subalgebras of g. Suppose q is
a parabolic subalgebra of g with nilradical u. A Levi factor l of q is a complementary
subalgebra to u in q (a Levi factor of a Borel subalgebra is also called a Cartan subalgebra
of g). Suppose g0 is a real form of g. We say q is nice if q∩ g0 = l0 is the real form of a
Levi factor l of q.

Suppose g0 is the Lie algebra of GL(n,C) and g is the complexification of g0. Let l0 be
the Lie algebra of an associated Levi subgroup L0 as defined in the previous section. We
now consider a construction of a nice parabolic subalgebra q such that q∩ g0 = l0 . Since
g0 is a complex Lie algebra (being treated as a real Lie algebra) we can make the following
realization of the complexified Lie algebra g. Introduce the real Lie algebra g0× g0 and
define the multiplication by i ∈ C as

i · (ξ1,ξ2) = (iξ1,−iξ2).

Then the map
g0→ g0×g0 by ξ 7→ (ξ ,ξ )

determines an isomorphism of the complexification g with g0×g0. According to this iden-
tification, the Borel subalgebras of g are the products of Borel subalgebras of g0 and the
parabolic subalgebras of g are the products of parabolic subalgebras of g0. Returning to
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the previous notations, let b0 ⊆ g0 be the Borel subalgebra of upper triangular matrices, let
l0 ⊆ g0 be a Levi subalgebra of block matrices defined by a partition of n and let p0 ⊆ g0
be the corresponding parabolic subalgebra. We define the opposite parabolic subalgebra
p

op
0 ⊆ g0 to be the parabolic subalgebra generated by l0 and the Borel subalgebra of lower

triangular matrices. Then
q= p0×p

op
0

is a nice parabolic subalgebra and one knows every nice parabolic subalgebra of g is G0-
conjugate to one constructed in this way. Given a Levi subgroup L0 associated to the parti-
tion defined by µ =(m1, . . . ,mn)∈ K̂0 then q will be called the corresponding nice parabolic
subalgebra.

The cohomological parabolic induction that Vogan uses is a derived functor construction
that produces Harish-Chandra modules for G0 from Harish-Chandra modules for L0 (the
corresponding maximal compact subgroup for L0 is K0∩L0, where K0 is the group of uni-
tary matrices in G0). In order to give the exact definition we need to introduce a certain
associated character of L0. Let u denote the nilradical of q, let u0 denote the nilradical of
p0, and let uop

0 denote the nilradical of pop
0 . We should emphasize that

u= u0×u
op
0

is not the complexification of u0 in this case, however the notation is convenient because we
are running out of letters to use. Let h0 ⊆ l0 be the Cartan subalgebra of diagonal matrices
and let h ⊆ g be the complexification of h0. Let ρ(u) denote one half the sum of the roots
of h in u. Thus ρ(u) extends uniquely to a morphism of Lie algebras

ρ(u) : l→ C.

For g ∈ L0 we define
χ2ρ(u0)(g) = det(Ad(g) |u0),

where we are considering the complex determinant of the holomorphic action. Then

χ2ρ(u
op
0 ) = χ

−1
2ρ(u0)

,

where u
op
0 is the nilradical of pop

0 . Letting u denote the nilradical of q, it follows that the
character

χ2ρ(u)(g) = det(Ad(g) |u) =

(
χ2ρ(u0)(g)∣∣χ2ρ(u0)(g)

∣∣
)2

for g∈ L0, has a well-defined square root. Thus there is a unique continuous character χρ(u)

of L0 whose complexified derivative is ρ(u).
Suppose V is a Harish-Chandra module for (l,K0∩L0) and let qop denote the parabolic

subalgebra of g opposite to q with respect to l. Thus

qop = l⊕uop,

where uop = u
op
0 ×u0 is the nilradical of qop. We define the following normalized (g,K0∩

L0)-module
M(V ) =U(g)⊗U(qop)

(
V ⊗χρ(u)

)
where V ⊗ χρ(u) is a qop-module by trivial extension, g acts by left multiplication on M(V )
and K0 ∩L0 acts by the tensor product of the adjoint action on U(g) with the given action
from V ⊗χρ(u). The cohomological parabolic induction functors used by Vogan are defined
by

Λ
p(V ) = Γ

p(M(V ))
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Embedding the unitary dual of GL(n,C) into standard Beilinson–Bernstein modules 137

where Γp is the p-th derived functor of the Zuckerman functor from the category of (g,K0∩
L0)-modules to the category of (g,K0)-modules.

Let k ⊆ g be the complexification of the Lie algebra k0 of K0 and let s denote the di-
mension of k∩u. Suppose µ ∈ K̂0, let L0 be the associated Levi subgroup and let q denote
the corresponding very nice parabolic subgroup. Then Vogan shows that the cohomolog-
ical parabolic induction in degree s defines an equivalence between the irreducible almost
spherical representations for L0 of type µ and the irreducible unitary representations for G0
with lowest K0-type µ . In particular, we have the following.

Theorem 2.4. Suppose µ = (m1, . . . ,mn) ∈ K̂0. Let L0 be the associated Levi subgroup and
let q be the corresponding very nice parabolic subalgebra.

(a) If V is the Harish-Chandra module of an irreducible almost spherical representa-
tion for L0 of type µ then Λs(V ) is the Harish-Chandra module of an irreducible
unitary representation of lowest K0-type u.

(b) If M is the Harish-Chandra module of an irreducible unitary representation of low-
est K0-type u then there exists a unique irreducible almost spherical representation
V for L0 of type µ such that Λs(V )∼= M.

3. THE BEILINSON–BERNSTEIN CLASSIFICATION

3.1. Sheaves of twisted differential operators. The Beilinson–Bernstein classification is
built on a theory of sheaves of modules for twisted sheaves of differential operators (TDOs)
on the flag variety of a complex reductive Lie algebra, so we begin with that. Most of what
we need is spelled out (probably more clearly) in [9].

Since the complex adjoint group Int(g) of g acts transitively on the set of Borel subal-
gebras of g, the resulting homogeneous space X is a smooth algebraic variety, called the
full flag variety of g. The TDOs are parametrized by the elements of the dual of a Cartan
subalgebra of g. But in order to make this natural, it is convenient to introduce the abstract
Cartan dual. In particular, for x ∈ X we let bx denote the corresponding Borel subalgebra
and nx the nilradical of bx. Put

hx = bx/nx.

If g1,g2 ∈ Int(g) are two elements that send x∈X to y then the corresponding isomorphisms

g1 : hx→ hy and g2 : hx→ hy

are identical. In particular, the stabilizer of x in Int(g) acts trivially on hx. This allows us
to identify the dual spaces h∗x for x ∈ X , in a canonical way. In particular, we define the
abstract Cartan dual h∗ab to be the space of functions

σ : X →
⋃
x∈X

h∗x such that σ(x) ∈ h∗x and σ(g · x) = g ·σ(x).

If h is a Cartan subalgebra of g contained in a Borel subalgebra bx then the natural projection

h→ bx/nx

coupled with the evaluation at x determines an isomorphism

h∗ab
∼= h∗,

called the evaluation of h∗ab in h∗ at x. This gives us a well-defined set of roots ∆ab ⊆ h∗ab
and a subset of positive roots ∆

+
ab ⊆ Σab corresponding to the roots of h in bx. Following the

development in [9], for each λ ∈ h∗ab we define a corresponding sheaf of TDOs

Dλ
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on the algebraic variety X . As a point of reference, letting ρ ∈ h∗ab denote one half the sum
of the positive roots, we note that

D−ρ

is the sheaf of differential operators (with regular coefficients) on X .
Let Z(g) denote the center of the enveloping U(g). By definition, an infinitesimal char-

acter is a homomorphism of algebras

Θ : Z(g)→ C.
This is an important invariant associated to an irreducible admissible representation, since
one knows Z(g) acts on an irreducible Harish-Chandra module via an infinitesimal char-
acter. If Θ denotes an infinitesimal character we let UΘ denote the algebra defined as the
quotient of U(g) by the ideal in U(g) generated by the kernel of Θ. Let Wab denote the Weyl
group of h∗ab associated to the root system ∆ab. Then the Harish-Chandra map determines
a bijection between the set of infinitesimal characters and the orbits of Wab in h∗ab. If the
λ ∈ h∗ab and the Wab-orbit of λ corresponds to Θ via the Harish-Chandra map we write

Θ =Wab ·λ and λ ∈Θ.

For λ ∈Θ Beilinson and Bernstein prove that

Γ(X ,Dλ )∼=UΘ.

3.2. The standard Harish-Chandra modules. Now suppose G0 is a reductive Lie group
of Harish-Chandra class. To simplify things a bit, we also assume that G0 is the real form of
a connected complex reductive group G (this means, for example, the Cartan subgroups of
G0 are abelian). In particular, when G0 = GL(n,C), we can identify G0 with the diagonal
in G = G0×G0, where G has the complex Lie algebra g0× g0 defined previously. We
let K0 ⊆ G0 be a maximal compact subgroup and K ⊆ G the complexification of K0. The
Beilinson–Bernstein classification for irreducible admissible representations classifies the
irreducible Harish-Chandra sheaves for (Dλ ,K) and relates them to the irreducible Harish-
Chandra modules with infinitesimal character Θ=Wab ·λ . We now recall a few points about
the classification of the irreducible Harish-Chandra sheaves for (Dλ ,K).

Fix x ∈ X and let Kx denote the stabilizer of x. Our assumptions on G0 imply that an
irreducible algebraic representation of Kx is a holomorphic character

χ : Kx→ C∗.
Let tx denote the Lie algebra of Kx and let bx be the Borel subalgebra of g corresponding
to x. Then the evaluation at x determines a natural correspondence between h∗ab and the
homomorphisms of Lie algebras from bx into C. For λ ∈ h∗ab we let

λx : bx→ C
the corresponding homomorphism of Lie algebras. We say a holomorphic character χ :
Kx→ C∗ is compatible with λ if

dχ = λx +ρx |tx ,
where dχ is the derivative of χ and ρx is the evaluation of ρ at x.

We now consider the construction of the standard Harish-Chandra sheaves for (Dλ ,K).
Suppose Q is a K-orbit on X . For simplicity of notation we assume each K-orbit Q contains
a distinguished point x ∈ Q. Then a holomorphic character χ : Kx → C∗ determines a K-
homogeneous algebraic line bundle Lχ defined over Q. Let Q denote the Zariski closure of
Q in X . Put

∂Q = Q−Q and U = X−∂Q.
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Thus U is Zariski open in X and Q is Zariski closed in U . Let DQ
χ denote the sheaf of

differential operators of Lχ on Q and suppose χ is compatible with λ ∈ h∗ab. Let Dλ |U
denote the restriction of the TDO Dλ to U . Then the theory of D-modules defines an exact
functor i+ called the direct image for D-modules that relates the category of Harish-Chandra
sheaves for

(
DQ

χ ,K
)

to the category of Harish-Chandra sheaves for (Dλ |U ,K). The direct
image in the category of sheaves defines a functor j∗ from the category of Harish-Chandra
sheaves for (Dλ |U ,K) to the category of Harish-Chandra sheaves for (Dλ ,K). The object

Iλ (Q,χ) = j∗i+(Lχ)

is called the standard Harish-Chandra sheaf with the given parameters. One knows that
Iλ (Q,χ) contains a unique irreducible Harish-Chandra subsheaf Jλ (Q,χ). One can show
that every irreducible Harish-Chandra sheaf for

(
Dχ ,K

)
is isomorphic to one of the form

Jλ (Q,χ) and that

Jλ (Q1,χ1)∼= Jλ (Q2,χ2)⇔ Q1 = Q2 and χ1 = χ2.

It will be convenient for us to write

Iλ (Q,χ) = Γ(X ,Iλ (Q,χ))

and call this the standard Harish-Chandra module with the given parameters. However, the
translation of the classification of the irreducible Harish-Chandra sheaves into a classifica-
tion of irreducible Harish-Chandra modules is a bit subtle, and we need to make some more
definitions first. An element λ ∈ h∗ab is called antidominant if

∨
α (λ ) /∈ {1,2,3,4, . . .}

for each α ∈ ∆
+
ab, where

∨
α denotes the dual root to α . We note that each Weyl group orbit

in h∗ab contains at least one antidominant element. An infinitesimal character Θ =Wab ·λ is
called regular if the corresponding orbit Wab ·λ has the same number of elements as Wab.
This is equivalent to the condition that

∨
α (λ ) 6= 0 for each root α.

An infinitesimal character is called singular when it is not regular.
For the irreducible Harish-Chandra modules with regular infinitesimal character we have

the following [9].

Theorem 3.1. Suppose Θ is a regular infinitesimal character and choose λ ∈ Θ antidomi-
nant. Then the Harish-Chandra modules of the form

Jλ (Q,χ) = Γ(X ,Jλ (Q,χ))

are irreducible and these representations (for λ fixed) parametrize the irreducible admissi-
ble representations with infinitesimal character Θ.

For Θ regular and λ ∈Θ antidominant the standard Harish-Chandra module

Iλ (Q,χ) = Γ(X ,Iλ (Q,χ))

will be called the classifying module with the given parameters. When Iλ (Q,χ) is a classi-
fying module, one knows that Jλ (Q,χ) is the unique irreducible submodule of Iλ (Q,χ).

For the irreducible modules with a singular infinitesimal character, the parametrization is
a bit trickier. In particular, for Θ singular and λ ∈Θ antidominant, we call

Iλ (Q,χ) = Γ(X ,Iλ (Q,χ))
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a classifying module if

Jλ (Q,χ) = Γ(X ,Jλ (Q,χ)) is not zero.

When Iλ (Q,χ) is a classifying module one knows that Jλ (Q,χ) is the unique irreducible
submodule of Iλ (Q,χ). In general we have the following.

Theorem 3.2. Suppose Θ is an infinitesimal character and choose λ ∈ Θ antidominant.
Then the irreducible Harish-Chandra modules with infinitesimal character Θ are parame-
trized by the classifying modules Iλ (Q,χ). In particular, the irreducible Harish-Chandra
modules with infinitesimal character Θ are the submodules Jλ (Q,χ)⊆ Iλ (Q,χ).

We finish this section with a few special facts about how the Beilinson–Bernstein clas-
sification applies to a connected complex reductive Lie group G0 with compact real form
K0 ⊆ G0. Let b0 ⊆ g0 be a Borel subalgebra and let h0 ⊆ b0 be a Cartan subalgebra. We
assume h0 is the Cartan subalgebra of b0 normalized by a maximal torus T0 in K0. Let ∆

+
0

denote the set of positive roots of h0 in b0 and let W0 denote the Weyl group of h0 in g0. For
each w ∈W0 we define a set of positive roots w∆

+
0 and a Borel subalgebra of g0

wb0 = h0 + ∑
α∈∆

+
0

(g0)
wα ,

where (g0)
wα represents the corresponding root subspace. Then we can parametrize the K

orbits in X in the following way. As before, we identify g with g0×g0. Thus g0 is identified
with the diagonal in g0×g0 and G0 acts on g by the formula

g · (ξ1,ξ2) = (Ad(g)ξ1,Ad(g)ξ2).

Put

b= b0×b0

and for each w ∈W0 we define a Borel subalgebra bw of g by

bw = wb0×b0.

Then the Borel subalgebras bw for w ∈W0 naturally parametrize both the K-orbits and the
G0-orbits on X . Choose a point bw ∈ X and suppose

χ : H0→ C∗

is a continuous character. Let dχ ∈ h∗ be the complexification of the differential of χ and
let Kw denote the normalizer of bw in K. Then there is a unique holomorphic character of
Kw whose derivative is compatible with dχ . We write

λw = dχ +ρw,

where ρw is one half the sum of the roots of h in bw. Identify λw with λ ∈ h∗ab by the
evaluation to the point bw. We write I (Qw,χ) to indicate the corresponding standard
Harish-Chandra sheaf on X (this notation is unambiguous because in this case λ is uniquely
determined by the character χ) and put

I(Qw,χ) = Γ(X ,I (Qw,χ))

to indicate the corresponding standard Harish-Chandra module.
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3.3. The unitary dual of GL(n,C) and the Beilinson–Bernstein classification. Because
Vogan uses cohomological parabolic induction associated to parabolic subalgebras, we will
use some facts about standard Harish-Chandra sheaves on a generalized flag space to relate
the two classifications. Some details can be found in [3] and [2]. Suppose q is a parabolic
subalgebra of g. Then the corresponding generalized flag space Y is the quotient of the
complex adjoint group Int(g) by the normalizer of q. The points in Y can be identified
with the parabolic subalgebras of g that are Int(g)-conjugate to q. When q is the corre-
sponding nice parabolic subalgebras associated to the Levi subgroup defined by a partition
µ = (m1, . . . ,mn) ∈ K̂0 then one knows that the K-orbit of q in Y is closed.

Let L0 be the associated Levi subgroup and let l be the corresponding complexified Lie
algebra. Then given an irreducible Harish-Chandra module V associated to an irreducible
admissible representation of L0, we can define a corresponding standard Harish-Chandra
sheaf I (q,V ) on Y [2, Definition as in Section 6]. In the case we are studying, V is the
Harish-Chandra module of a representation induced from a character of a real parabolic
subgroup of L0. Because of that, it is not difficult to relate I (q,V ) to a specific standard
Harish-Chandra sheaf on X . We now describe how to do this.

There is a canonical equivariant projection

π : X → Y

defined by associating a Borel subalgebra b to the unique point in Y corresponding to the
parabolic subalgebra that contains b. Let

Xq = π
−1({q})

be the fiber in X over Y . Then, in a natural way, Xq is identified with the flag variety for L0.
Indeed, if b is a Borel subalgebra of g contained in q then b∩ l is a Borel subalgebra of l. In
general, there is a unique K-orbit Q in X such that Q∩Xq is nonempty and open in Xq. In
our case the points in Q∩Xq correspond to the Borel subalgebras of l0. We now consider
specifically how to characterize this particular Q with respect to the parameters previously
defined.

Let b0 be the Borel subalgebra of upper triangular matrices in g0. Recall that µ ∈K̂0
defines an associated Levi factor L0. Let l0 be the Lie algebra of L0 and let p0 be the
parabolic subalgebra with Levi factor l0 that contains b0. Put

qop = p
op
0 ×p0.

Let n0 be the nilradical b0 and let h0 denote the Cartan subalgebra of diagonal matrices.
Then the roots of h0 in n0 ∩ l0 determine a positive system of roots of h0 in l0. We define
the µ-related Borel subalgebra

bµ =
(
h0⊕n0∩ l0⊕u

op
0

)
×b0,

where u
op
0 is the nilradical of pop

0 . The µ-related K-orbit Qµ is the K-orbit of bµ . Note that,
according to the parametrization we gave in the previous section, the parameter w ∈W0 for
Qµ is the product of the longest element in W0 with the longest element from the Weyl group
for l0.

The following proposition is actually valid for any connected complex reductive group
G0 and χ a continuous character, although we only need the result in the more restricted
context. Using the above notations we let H0,B0,L0, etc. denote the corresponding con-
nected subgroups of G0.
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Proposition 3.3. Let µ ∈K̂0 and maintain the above notations. Suppose D0 is a parabolic
subgroup of L0 that contains L0∩B0 and let

χ : D0→ C∗

be a continuous character. By restriction, χ determines a character of H0 and via the
construction sketched in the previous section defines a standard Harish-Chandra sheaf
I (Qµ ,χ) of Dλ -modules defined on X. Let V be the Harish-Chandra module of the
parabolically induced representation

IL0
D0
(χ)

and let Y be the generalized flag space corresponding to the parabolic subalgebra qop. Then
we can define a standard Harish-Chandra sheaf I (qop,V ) on Y .

I(qop,V ) = Γ(Y,I (qop,V ))

and let δD0 denote the half-density character of D0. Then we have a natural inclusion of
Harish-Chandra modules

I(qop,V )⊆ I(Qµ ,χ⊗δD0).

Proof: Let δB0∩L0 be the half-density character of B0 ∩ L0 and let W be the Harish-
Chandra module of

IL0
B0∩L0

(χ⊗δ
−1
B0∩L0

⊗δD0).

Then it follows immediately from the definition of the parabolic induction that we have a
natural inclusion of Harish-Chandra modules V ⊆W. This natural inclusion in turn defines
a natural inclusion of Harish-Chandra sheaves on Y ,

I (qop,V )⊆I (qop,W ).

Taking global sections and putting I(y,W ) = Γ(Y,I (y,W )) we obtain a corresponding in-
clusion of Harish-Chandra modules,

I(qop,V )⊆ I(qop,W ),

for the pair (g,K0). It remains to prove that we have a natural isomorphism

I(Qµ ,χ⊗δD0)
∼= I(qop,W ).

We claim that this result can be deduced by the induction in stages for standard Harish-
Chandra sheaves [3, Theorems 4.14 and 5.4]. Indeed, letting π : X→Y denote the canonical
projection and letting π∗ denote the standard direct image in the category of sheaves one can
deduce that

π∗(I (Qµ ,χ⊗δD0))
∼= I (qop,W ),

since the orbit Q∩Xqop is affine and open. Thus the result follows. �

The next step needed in order to relate the classification of Vogan to the classification
of Beilinson–Bernstein is the duality theorem of Hecht, Miličić, Schmid and Wolf [7] as
established for a generalized flag variety [4]. The form that is most convenient for us is
the one from [10, Theorem 5.3]. To apply this formula we note that since q and qop are
θ -stable parabolic subalgebras it follows that the dimension of the K-orbit of y is the value
s of Theorem 2.4.1. Thus we have the following.

Theorem 3.4. Maintain the notations from the previous proposition and Theorem 2.4.1.
Then the duality theorem defines a natural isomorphism

Λ
s(V )∼= I(qop,V ⊗χρ(uop)).
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In particular we have a natural inclusion of Harish-Chandra modules

Λ
s(V )⊆ I(Qµ ,χ⊗δD0⊗χρ(uop)).

Proof: Recall the (g,K0∩L0)-module

M(V ) =U(g)⊗U(qop)

(
V ⊗χρ(u)

)
.

Let Γp denote the p-th derived functor of the Zuckerman functor from the category of
(g,K0∩L0)-modules to the category of (g,K0)-modules. Let N denote an irreducible Harish-
Chandra module for L0. Then the duality theorem provides a natural isomorphism

I(qop,N)∼= Γ
s (U(g)⊗U(qop)

(
N⊗χ2ρ(u)

))
= Γ

s (M(N⊗χρ(u))
)
= Λ

s (N⊗χρ(u)

)
.

Putting N =V ⊗χρ(uop) and using the fact that χρ(uop) = χ
−1
ρ(u) gives the desired result. �

The previous result is our preliminary embedding result, however it turns out that the
value λ for the associated standard modules I(Qµ ,χ⊗δD0 ⊗ χρ(uop)) is not necessarily an-
tidominant. The first counterexample we find is in the case of GL(5,C) where µ ∈ K̂0 has
the form (m,m,m,m,m−1) and χµ is the unitary character of the associated Levi subgroup
obtained by trivially extending the unitary character determined by µ from the maximal
compact subgroup U(4) ×U(1). What we show here has to do with what happens in the
two extreme cases. On the one hand, in the case that µ = (m1, . . . ,mn) is a strictly de-
creasing sequence (i.e. when Qµ is the closed K-orbit on X) then we can show the value λ

for the associated standard module is antidominant and regular. Thus in this case Vogan’s
representation coincides with the associated standard Beilinson–Bernstein module (which
is a classifying module). Also, in the other extreme case, when µ is the constant sequence
(i.e. when Qµ is the open K-orbit on X) then we can show the value λ for the associated
standard module is antidominant. However, in the case of the open orbit, it turns out that
I(Qµ ,χ⊗δD0⊗χρ(uop)) is not a classifying module when λ is singular (consider the exam-
ple below). We sum this up in the following theorem.

Theorem 3.5. Suppose µ ∈ K̂0. Let L0 be the associated Levi subgroup and let D0 be
a parabolic subgroup of L0 that contains the Borel subgroup B0 ∩ L0 defined previously.
Suppose

χ : D0→ C∗

is a special spherical character of type µ . Let V be the Harish-Chandra module of IL0
D0
(χ)

and let Qµ denote the µ-related K-orbit in the full flag space X. We assume that Qµ is
either the open K-orbit or the closed K-orbit. Then the value λ associated to the standard
Harish-Chandra module

I(Qµ ,χ⊗δD0⊗χρ(uop))

is antidominant. In particular, in the case of the closed orbit I(Qµ ,χ⊗ χρ(uop)) is a classi-
fying module isomorphic to Λs(V ).

Proof: We want to calculate the numerical values of the positive dual roots on the cor-
responding parameter λ . Let ∆0 denote the set of roots of h0 in g0. Each root α0 ∈ ∆0
determines the following two roots of h in g:

α : h0×h0→ C defined by α(H1,H2) = α0(H1)

and
α : h0×h0→ C defined by α(H1,H2) = α0(H2).
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When
λ0 : h0→ C

is a real linear form and λ is the complexification then the values of the corresponding dual
roots are given by

∨
α(λ ) =

1
2
(λ0 (Hα)− iλ0 (iHα)) and

∨
α(λ ) =

1
2
(λ0 (Hα)+ iλ0 (iHα)) ,

where Hα ∈ h0 is the element associated to the dual root
∨

α0. In our case, the matrices Hα

are of the form
Eii−E j j,

where i 6= j and the matrices Ekk give the standard basis vectors for the diagonal in gl(n,C).
Now suppose

µ = (m1, . . . ,mn)

and let χ : H0→ C be the character

χ


z1 0 · · ·

0
. . . 0

... 0 zn

=

(
z1

|z1|

)m1

· · ·
(

zn

|zn|

)mn

.

Write dχ : h→ C for the corresponding complexification of the derivative and let α0 =
ei− e j, where {e1, . . . ,en} is the dual basis to {E11, . . . ,Enn}. Then

∨
α(dχ) =

mi−m j

2
and

∨
α(dχ) =

m j−mi

2
.

Consider the set of positive roots defined by the Borel subalgebra bµ . Using the previous
notations, the nilradical of bµ is(

(n0∩ l0)⊕u
op
0

)
× ((n0∩ l0)⊕u0) .

Let ∆(u0) denote the roots of h0 in u0. These are some of the roots of the form ei−e j where
i < j. In fact, because of the definition of l0 as square blocks where the sequence defined
by µ is constant, it follows that for the roots

{α : α0 ∈ ∆(u0)} that
∨
α(dχ) =

m j−mi

2
≤−1

2
.

On the other hand let ∆(u
op
0 ) denote the roots of h0 in u

op
0 . These are some of roots of the

form ei− e j where i > j. In this case it follows that for the roots{
α : α0 ∈ ∆(u

op
0 )
}

that
∨
α(dχ) =

mi−m j

2
≤−1

2
.

Finally, once again because of the definition of l0 as square blocks where the sequence
defined by µ is constant one can check that

∨
β (dχ) = 0 if β ∈ ∆(n∩ l),

where
n∩ l= n0∩ l0×n0∩ l0

is the complexification of n0∩ l0. Assume χ is a unitary character of the form

χ


z1 0 · · ·

0
. . . 0

... 0 zn

= |z1|it1 · · · |zn|itn ,
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with tk ∈R. Then the values
∨
α(dχ) and

∨
α(dχ) are pure imaginary numbers (possibly zero).

We need to consider the effect from the Stein series. Suppose we have consecutive blocks
in L0 of the same size with characters χ j and χ j+1 as defined earlier (corresponding to the
Stein series). Suppose 0 < t < 1

2 . Then, assuming that the basis vectors Eii and E j j occur in

the specified blocks, the possible values of
∨
α(dχ) and

∨
α(dχ) are−2t,−t, 0, t or 2t. At any

rate, it follows that if χ is a special spherical character of type µ then for a positive root β

(a root of h in bµ), the real part of
∨
β (dχ) is less than one-half.

So far we have shown that if χ is a special spherical character of type µ then for a positive

root β (a root of h in bµ), the real part of
∨
β (dχ) is less than one-half. It remains to consider

the effect of the character δD0 ⊗ χρ(uop) and the shift by ρµ (i.e. the half sum of the positive
roots corresponding to bµ ). Let ρ(n∩ l) be the half sum of the roots of h in n∩ l. Then,
since uop = u

op
0 ×u0, it follows that

ρµ = ρ(n∩ l)+ρ(uop).

In particular consider the case of a unitary character χ : L0→ S1 of type µ , λ the associated
parameter and β ∈ ∆(nµ); we have

∨
β (λ ) =

∨
β
(
dχ +ρ(uop)−ρµ

)
=
∨
β (dχ−ρ(n∩ l)) .

We have seen that the real part of
∨
β (dχ) is non-positive. Indeed, in the case of the open

orbit
∨
β (dχ) is negative and n∩ l = n∩h = 0, which establishes the theorem for this case.

On the other hand, for the general case and β ∈ ∆(n∩ l) one knows that
∨
β (−ρ(n∩ l))≤−1,

and note that for the closed orbit n∩ l= n∩ g=nµ . Let dδD0 denote the complexified
derivative of δD0 , where D0 is a parabolic subgroup as above. Then for each root vector Ei j
in the nilradical of the Lie algebra we have the factor

z1 0 · · ·

0
. . . 0

... 0 zn

 7→ |zi|
1
2
∣∣z j
∣∣− 1

2

appearing in the character dδD0 . Using the formula above, it follows that
∨
β (dδD0)≤

1
2
.

Thus, putting together the results we have seen, if

λ = dχ +dδD0 ++ρ(uop)−ρµ

then the real part
∨
β (λ ) < 1 for β ∈ ∆(n∩ l). This proves the antidominance result for the

closed orbit. �

Example: The previous theorem embeds a portion of the nonsingular part of the unitary
dual of GL(n,C) into the Beilinson–Bernstein classification of irreducible admissible rep-
resentations. In the singular case, the standard module we define is not necessarily a classi-
fying module. We give an example to illustrate this problem, which can already be observed
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for G0 = GL(2,C). Consider the K0-type

µ = (m,m).

Corresponding to this K0-type we can consider the Stein series representation induced from
the character

χ

(
z1 ∗
0 z2

)
= |z1|

1
2

(
z1

|z1|

)m

|z2|−
1
2

(
z2

|z2|

)m

.

Let ρ ∈ h∗ab denote the half sum of the positive roots and put

b= b0×b0.

Using the notation from the previous theorem, in this case L0 = GL(2,C), D0 = B0 and
uop = 0. Let K be the complexification of K0. Then the K-orbit Q of b is open and ρ

determines a K-equivariant algebraic line bundle O (ρ) defined on X . We note that O (ρ)
is a Dλ -module for the parameter λ = 0 and an irreducible Harish-Chandra sheaf. Let
j : Q→ X be the inclusion. Then the standard Beilinson–Bernstein module that realizes the
Stein series representation in question is given by the global sections of

I (Q,χ)∼= j∗ (O (ρ) |Q) ,

where j∗ is the standard direct image in the category of sheaves and O (ρ) |Q is the restric-
tion of O (ρ) to Q. There is a natural inclusion of sheaves

O (ρ)→ j∗ (O (ρ) |Q) .

In particular J (Q,χ) = O (ρ). By the Borel–Weil–Bott Theorem,

Γ(X ,J (Q,χ)) = J(Q,χ) = 0,

so that I(Q,χ) is not a classifying module. To further illustrate, we note that it is easy to
identify the correct classifying module (in this case there are only two K-orbits in X). In
particular, let bop denote the Borel subalgebra of g defined by

bop = b
op
0 ×b0,

where b
op
0 is the Borel subalgebra of g0 opposite to b0, and let F denote the quotient of

I (Q,χ) by O (ρ). Then F is supported on the K-orbit S of bop which is Zariski closed
in X . It follows that F is both an irreducible Harish-Chandra sheaf and a standard Harish-
Chandra sheaf. That is:

F = J (S,χ(ρ)) = I (S,χ(ρ)),

where
χ(ρ) : H0×H0→ C∗

is the corresponding holomorphic character. Applying the long exact sheaf cohomology
sequence obtained from the short exact sequence

0→ O (ρ)→I (Q,χρ(b))→I (S,χρ(bop))→ 0,

and using the Borel–Weil–Bott Theorem to conclude that H1(X ,O (ρ)) = 0, we obtain the
isomorphism of Harish-Chandra modules,

I(Q,χ)∼= I(S,χ(ρ)).

Thus the correct standard Beilinson–Berstein module for the unitary principal series in ques-
tion is I(S,χ(ρ)). �
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[9] Miličić, D.: Algebraic D-modules and representation theory of semisimple Lie groups. In “Analytic Co-
homology and Penrose Transform”, 133–168. American Mathematical Society, 1993.
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