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ABSTRACT. This article surveys in a non-technical way the current status of the theory of
symplectic and Poisson reduction of cotangent lifted Lie group actions exhibiting singu-
larities. We explain how the involved singular spaces obtained through several reduction
processes can be globally realized as stratified fiber bundles, where each of the strata is a
smooth bundle that can be identified with the reduced space obtained via some classical
reduction scheme for a cotangent lifted action where the singularities have been essentially
removed.

1. INTRODUCTION

The well known Marsden—Weinstein reduction scheme is a method to obtain a new sym-
plectic manifold from an old one equipped with a Hamiltonian action of a Lie group. If
(M, ®) is a symplectic manifold we say that a smooth Lie group action G x M — M is
Hamiltonian if G acts by symplectomorphisms and there exists a map J : M — g* satisfying

(i) o(&Ey, ) =d(J,&) for every Lie algebra element & € g, and
(ii) J(g-2) = Ady-. (J(2)) forevery g € G,z € M.

Condition (ii) is just a statement on the G-equivariance of J, while the vector field &y, in (i)
is the fundamental vector field for the G-action corresponding to the Lie algebra element &,
ie. Eu(z) = %tzoeté ‘2.

In a simple setup, if we are in the previous situation and the group action is free and
proper then the Marsden—Weinstein reduction result [13] states that for every u € g*, the
level set J~!(u) is a smooth manifold on which the G-action restricts to an action of the
coadjoint isotropy group, defined as

Gu={8€G: Adu=p}.

Moreover, the quotient space J ' (u)/ Gy, is a smooth symplectic manifold equipped with a
natural symplectic form @, uniquely defined by

Tro, =10,
where 1 : J7! () - M and 7 : J7'(u) — J~!(u)/Gy are the canonical inclusion and the
group projection respectively.
A second kind of reduction scheme that one can perform on a symplectic manifold
equipped with a Hamiltonian action is Poisson reduction [12]. In the present setup, and
under the same freeness and properness assumptions on the action G x M — M, we can

form the quotient manifold M /G, and this space is equipped with a natural reduced Poisson
bracket defined as

{f17f2}redo = w(Xfloﬂ?szOﬂ)v

Palabras clave. Marsden—Weinstein reduction, symplectic and Poisson manifolds, momentum maps, strat-
ified spaces.
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where fi, fo € C*(M/G), t: M — M /G is the group projection and X o1 is the Hamiltonian
vector field on M defined implicitly as

O (Xfion,") = d(fio 7).

There exists an intimate relationship between both reduction schemes which is the fol-
lowing: the symplectic leaves of the reduced Poisson manifold M /G correspond exactly to
the connected components of the Marsden—Weinstein reduced spaces J~!(u)/ Gy when u
ranges over g*.

An important particular case of Hamiltonian actions on symplectic manifolds is given
by cotangent lifted actions on cotangent bundles. Let Q be a smooth manifold and 7*Q its
cotangent bundle. T*Q is a symplectic manifold in a natural way equipped with a symplectic
form wyp expressed locally as

Wy = dx; Ady;,
where {x;} are local coordinates on the base and {y; } linear coordinates in the fibers. If a Lie
group G acts smoothly on Q (without any particular further conditions) then the cotangent
lifted action G x T*Q — T*Q is automatically Hamiltonian with respect to @y (it is also

free and proper if the original action on Q is so) and admits a momentum map defined by
the relation

J(ax), &) = (ax,Ep(x)) foranyxe Q, 0 € 70,6 €g. (1)

Note that the cotangent bundle projection 7 : T7*Q — Q is equivariant with respect to the
original action on Q and its cotangent lift to T*Q. Now, since 7*Q is equipped with two
different geometric structures, a symplectic form and a fibration, and both are left invariant
by the group action, it is reasonable to ask if under the processes of Marsden—Weinstein or
Poisson reduction, the various reduced spaces obtained are also going to exhibit a fibered
structure, besides the symplectic or Poisson structure like in the general case. This is the
starting point of the theory of cotangent bundle reduction, which seeks to give fibered re-
alizations of the reduced spaces J~!'(1)/Gy and (T*Q)/G when reduction is applied to a
cotangent lifted action on a cotangent bundle 7*Q. The main results of the theory can be
summarized in Figure 1, which is a convenient way to think about the so-called “gauge
picture” of Mechanics.

Symplectic Poisson
p=0
Gu=G Weinstein
uembedding U fibrating
Wf
Sternberg

FIGURE 1. Cotangent Bundle Reduction
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Gauged cotangent bundle reduction with singularities 101

The cases 4 =0, G, = G, u fibrating and u embedding all correspond to the Marsden—
Weinstein reduction process and are different ways of realizing the reduced symplectic
spaces J~!(u)/ Gy, as fiber bundles, which vary according to different properties of the
momentum value y. On the other hand, the two cases denoted “Weinstein” and “Stern-
berg” correspond to Poisson reduction and are two different fibered realizations of the same
Poisson reduced space (7*Q)/G. We shall now briefly review these cases.

u = 0. This is the first result of the theory of cotangent bundle reduction, obtained originally
by Satzer in [22]. It shows that if yu = 0 there exists a canonical symplectic diffeomorphism

@ : (371(0)/G, ) —0 (T*(Q/G), wg)c)-

That is, for the case of a cotangent lifted Hamiltonian action, the Marsden—Weinstein re-
duced space at u = 0 is precisely (up to a symplectic isomorphism) the cotangent bundle of
the quotient space Q/G of the base manifold Q. In this sense the content of this result is that
one can, starting with a Lie group action G x Q — Q, either construct the symplectic cotan-
gent bundle of Q and then reduce via the Marsden—Weinstein scheme at zero momentum,
or just quotient Q by the action of G and then construct its cotangent bundle equipped with
the corresponding canonical symplectic form, and both processes give the same outcome,
up to a symplectic diffeomorphism. Also it is interesting to note that using this result one
can define the cotangent bundle of a quotient space Q/G as the Marsden—Weinstein reduced
space of 7*Q via the cotangent lifted action of G to the total space.

Gy = G (totally isotropic momentum). This is historically the second result of the theory of
cotangent lifted actions. In the particular case when the group G is Abelian, this case was
already studied in [22]. A more general approach which does not require this hypothesis was
taken in [8] and [1]. This is also the first case in which twisting terms appear in the fibered
realizations of the Marsden—Weinstein reduced spaces for cotangent lifted actions. These
twisting terms modify the canonical symplectic form of the cotangent bundle involved in the
fibered model of the reduced space. They are sometimes also called magnetic or Coriolis
terms, due to their role in Mechanics. The most standard way of defining such a twisting
term is the following. Let u € g* and choose a principal connection .27 in the bundle Q —
Q/G. The one-form o, on Q defined by

aﬂ = <"Q{7“> (2)

can be shown to be G, invariant. Let  : Q — Q/G, be the orbit map for the restriction of
the G-action to Gy. Then, there is a unique two-form By, on Q/G, satisfying

7By = da. 3)

Notice that in the case of a totally isotropic element g one has G, = G and therefore
Q/Gy = Q/G. The fibered realization for the Marsden—Weinstein space at such a mo-
mentum value u then consists in a symplectic diffeomorphism

Qu: (I~ (1)/G, 04) — (T*(Q/G), wp/G — ©"By).

Obviously the map ¢, will depend on the choice of the connection .7, and in particular
it would be possible to choose as the target the “untwisted” or canonical cotangent bundle
(T*(Q/G),wyc) if it is possible to find a flat connection. In the classical theory of particles
and fields the twisting term By, corresponds to the strength of a gauge field &7 coupled to
classical particles that have as configuration space the physical spacetime Q/G and so the
symplectic form of their phase space 7*(Q/G) (and therefore their classical dynamics) are
modified by this term if the gauge field has non-vanishing strength. A typical example of
this situation would be if G = S' and Q is the trivial bundle S' x R*, in which case since S'
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is Abelian every momentum value (identified with the electric charge of a classical particle)
is totally isotropic and the term B, is precisely the strength of an electromagnetic field.
The embedding and fibrating pictures. These are two different ways of obtaining fibered
realizations of a Marsden—Weinstein reduced space for cotangent lifted actions and general
momentum values. If p is an arbitrary element of g* the embedding picture (see [8], [1])
realizes the reduced space as a subbundle of a twisted cotangent bundle via a symplectic
embedding
Qu: (I (), 04) = (T*(Q/Gy), 0y —T°By),

which depends on the choice of a connection <7 on Q — Q/G producing the twisting term
By.

The fibrating picture on the other hand (see [11]) realizes the reduced space via a sym-
plectic diffeomorphism

Qu - (Jil(:u)a w,LL) — <V7 wQ/(Z[)h,&f)a
where
Oun—V —=T"(Q/G)
is a bundle over T*(Q/G) having as standard fibre the coadjoint orbit &), C g* passing
through the chosen momentum value u. The total space is equipped with a symplectic form
of the form
-
a)Q/G = COQ/G—FKKS@?M +<@“,

where there is a contribution coming from the canonical symplectic form @y, on T*(Q/G),
the base of the bundle V, another term denoted KKS@, which is related to the Konstant—
Kirillov—Souriau symplectic form on the fiber &},, and a third term %, which is related to
the twisting term B, of the principal connection .7, on which the map ¢, depends.

Note that in the particular case when G, = G is totally isotropic this realization coincides

with the previous totally isotropic momentum case since the coadjoint orbit &), is trivial.
Analogously, in that case the symplectic embedding ¢ in the embedding picture becomes
injective and also the embedding picture coincides with the totally isotropic momentum
case, which in turn contains the u = 0 as a particular case, since from (2) and (3) we see
that in the zero momentum case the twisting term must be trivial. Therefore, as far as the
symplectic left part of Figure 1 goes, each arrow represents a step forward in generality
since the realization of the target has as particular case the one on the source.
The Weinstein and Sternberg pictures. These are two very closely related fibered realiza-
tions of the Poisson reduced space 7*Q/G. They were independently obtained in the same
year in [25] and [26]. In both cases (which only differ in the order that some fiber bundle
constructions like pull-back and association are performed) there is a Poisson diffeomor-
phism (depending on the choice of a connection .7 on Q — Q/G)

(T (T*Q/G7{'7'}red) — (Sv{'a‘}Q/G,M)
where g* — S — T*(Q/G) is a bundle over T*(Q/G) having as standard fiber the dual Lie
algebra g*. This space is equipped with the Poisson structure
{ -}Q/G,% ={, ~}Q/G + LiePoiss + A
where {-,-}¢/¢ is a contribution related to the Poisson structure on 7*(Q/G) corresponding

to the canonical symplectic form @y, on the base T*(Q/G), LiePoiss is a term constructed
from the Lie—Poisson structure on the fiber g* and 4 is a term involving the curvature of
o .

Finally, the fibrating pictures make explicit the fact stated earlier that the Marsden—
Weinstein reduced spaces correspond to the symplectic leaves of the Poisson reduced spaces.
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Gauged cotangent bundle reduction with singularities 103

In fact, we can think of the fibrating version of the symplectic reduced space ), —V —
T*(Q/G) as a subbundle of the reduced Poisson space g* — S — T*(Q/G) obtained by just
taking the restriction on each fiber from g* to the coadjoint orbit &), which, if equipped
with the Konstant—Kirillov—Souriau symplectic form, is precisely a symplectic leaf of g*
equipped with the Lie—Poisson structure. This is the meaning of the two transversal arrows
in Figure 1.

The program of singular cotangent bundle reduction started in [14] and [5] and continued
in several references such as [7, 9, 16, 18, 21, 23] seeks to obtain realizations analog to those
of Figure 1 once the freeness assumption in the group action has been dropped. This leads to
a number of difficulties mainly related to the fact that the several quotient spaces appearing
in the theory are no longer smooth manifolds. Although other approaches do exist, we will
treat this issue by working within the framework of stratified spaces.

Singular cotangent bundle reduction is still an unfinished topic. In the remainder of
this article we will expose the basic results of the theory for the cases u = 0 and totally
isotropic pt. Partial results about the embedding and fibrating pictures were already obtained
in [7, 14, 16] for a particular class of actions with singularities but, up to our knowledge,
the general case has not yet been fully addressed. The singular version of Poisson cotangent
bundle reduction, encompassing singular analogues of the Weinstein and Sternberg spaces
is the content of [17].

2. STRATIFIED SPACES AND ORBIT TYPES

We now recall the basic aspects of the theory of stratified spaces and its role in reduction
theory. See [19] and [15] for an in-depth exposition. The main example that we will use is
the stratification of the orbit space for a proper Lie group action.

Let X be a topological space and 2% = {X; : i € I} a collection of locally closed disjoint
subspaces of X which are smooth manifolds in the induced topology. We say that

X =[x

icl
induces a stratification of X if the above partition of X is locally finite and satisfies
XiNX; #0 <= X;CX;\X; fori#j.

In that case we say that X; and X; are in incidence relation. Therefore, a stratification of
a singular topological space X describes it as a union of smooth manifolds glued together
along their boundaries. The sets X; are called the strata of the induced stratification (al-
though usually a technical maximality condition that will not be explained here is also
required).

The notion of mappings between stratified spaces will also play a notable role in the
description of singular reduced cotangent bundles. Let X and Y be topological stratified
spaces, being their respective partitions 2 = {X; : i € I} and 2y = {Y, : r € J}. Let
f X — Y be a continuous map. We will say that f is a stratified morphism if for every
i €1, f(X;) CY, for some r € J and the restriction f| e X; — Y, is smooth. If foreach i € I
the restriction of f is a diffeomorphism (resp. submérsion, embedding, etc.) we will say
that f is a stratified diffeomorphism (resp. submersion, embedding, etc.). In particular a
stratified fiber bundle will consist in a stratified fibration f: X — Y.

Let G x M — M be a proper action of a Lie group G on the smooth manifold M. The
orbit space M /G is not a manifold in general, however it has a natural stratification induced
by its partition into orbit types. Let H C G be a compact subgroup of G. The orbit type set
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M) is defined as
M) = {z € M : G;is conjugate toH },
where G, C G denotes the stabilizer of z € M for the G-action.

It can be proved [4] that the connected components of M) are embedded submanifolds
of M. We will assume from now on that every orbit type submanifold is connected, since
otherwise every aspect of the theory persists just by applying it component by component.
In addition, by construction, orbit types are G-invariant and satisfy

(i) M(y)/G is either empty or a smooth manifold.
(i) The partition
M/G= | | Mu)/G 4)
HCG
induces a stratification of M /G called the orbit type stratification.

Using this framework, Sjamaar and Lerman obtained in their seminal paper [24] the fol-
lowing result, which is an analog of the Marsden—Weinstein symplectic reduction theorem
in the case of proper Lie group actions with singularities.

Theorem 1. Let (M, ®) be a symplectic manifold equipped with a proper and Hamiltonian
action of the Lie group G with associated momentum map J : M — g*. Then the partition

J7H0)/G= | | 37 (0)nM&))/G (5)
HCG
induces a stratification of J~'(0)/G. Moreover, the manifolds (J~'(0) NMw)/G, if not

empty, are equipped with natural reduced symplectic forms a)éH)

(=Mo" = ") e,

where 1" : J71(0) M ) — M and & : J=1(0) "M () — (I~ (0) "M 1)) /G are the natural
inclusion and group projection, respectively. This stratification is called the symplectic

stratification of J~1(0) /G.

characterized by

The above theorem realizes the singular quotient J~'(0)/G as a union of smooth sym-
plectic manifolds for which the symplectic structures are obtained in a Marsden—Weinstein
style. Obviously, since a free action is such that all the stabilizers are trivial, in that case
the above partition consists in a single element, namely the one corresponding to H = {e},
which is of course the full smooth quotient J='(0)/G, and so the Marsden—Weinstein re-
duction result at momentum p = 0 is recovered. Theorem 1 was further generalized in [3]
to deal with the case of general u (see also [2] for an alternative approach not based on the
theory of stratified spaces). Although the completely general case is slightly more involved,
we collect for later convenience the following particular case. If u satisfies G, = G then
the results of Theorem 1 carry over to a description of the reduced space J~'(u)/G just

substituting J~!(0) by J~! () and ") by af".

3. REDUCTION AT MOMENTUM ZERO

Notice that the starting point for Theorem 1 was a symplectic manifold equipped with an
action of a Lie group G with singularities that respected the existing geometric structure (the
symplectic form). This result then describes the topological symplectic quotient J~'(0)/G
in terms of a stratification that includes this geometric data, since the strata are symplectic
manifolds. With this point of view, the approach for studying the particular case of cotan-
gent bundle reduction for singular actions consists in describing the topological symplectic
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Gauged cotangent bundle reduction with singularities 105

quotient relative to a cotangent lifted action G x T*Q — T*Q respecting both the symplec-
tic and fibered structures present on 7*Q. Therefore, using the same guiding principle, we
wish to obtain a description of J=!(0)/G as a stratified fiber bundle in which the strata of the
total space recover some geometric structure from the original canonical symplectic form
of T*Q. That is, both geometric structures are present in the resulting stratification.

In order to attack this problem, we start by noticing the following: The expression of
momentum map for the cotangent lifted action (1) implies that J=!(0) C T*Q is at each point
z € Q the annihilator of the tangent space to the group orbit G - x. Therefore the cotangent
bundle projection 7 : T*Q — Q induces a singular G-equivariant fibration 7: J~'(0) — Q
that descends to a continuous projection

:J710)/G — Q/G.

We wish to realize this natural projection as a stratified fibration, together with geometric
structure on the smooth strata of J~!(0)/G induced from the original symplectic form wp.
There are obvious candidates for which should be the stratifications on the source and target
spaces. Namely the symplectic stratification (5) on J~!'(0) /G and the orbit type stratification
(4) on Q/G. The following two properties are straightforward to prove (see [21]).

Proposition 1. Let the Lie group G act on the manifold Q and on T*Q by cotangent lifts
with associated momentum map given by (1). Then, for any compact subgroup H C G:

i) (I'(0)N(T*Q) () /G # 0 if and only if Q) /G # 0.
(i) (I 0)N(T*Q)w))/G) = O/ G.
In particular, it follows from (ii) that if both spaces are equipped with the above men-
tioned stratifications, 7° cannot be a stratified morphism since it does not map strata to

strata. The solution to this fact is to refine the symplectic stratification of J='(0)/G in the
following way: it is showed in [18] that, given two subgroups H,K C G, the sets

JH0)N(T* Q) a)) N "0,

are non-empty if and only if H C K, and in that case they are smooth G-invariant subbundles
of T*Q 0w The main result describing the stratified fibered structure of the singular reduced

spaces at 4 = 0 for cotangent lifted actions is the following.

Theorem 2 ([18]). Let the Lie group G act on the manifold Q and on T*Q by cotangent lifts
with associated momentum map given by (1). Then the partition

J710)/G = || Sk—n (6)
HCK
where
—1 * *
30N (T 0y N T°0)
G )
induces a stratification of the reduced space J~'(0)/G satisfying:

Sk—H =

(i) If Q/G is equipped with the orbit type stratification (4) then the induced continuous
projection
:J70)/G = Q/G
is a stratified fibration, with T°(Sk) = Q(x)/G. for any pair H C K.
(ii) If H C K, then Sx_,y is a coisotropic submanifold of the symplectic stratum

((3710)N(T*Q) ) /G, ).
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106 Miguel Rodriguez-Olmos

(iii) In particular, if H = K then Sy _.p is an open and dense symplectic submanifold of
((Jto)n (T*Q)(H))/G, a)éH)), symplectomorphic to (T*(Q(H)/G), wQ(H)/G)'

The stratification induced by (6) is called the coisotropic stratification of J~'(0) /G, and the
manifolds Sx_.g are its coisotropic strata.

The previous theorem shows that by (i) the coisotropic stratification of J~!(0)/G is com-
patible with the natural projection 7° and the natural orbit type stratification of Q/G, in the
sense that 7 becomes a stratified fibration. Furthermore, it is compatible with the symplec-
tic stratification of J~!(0)/G at a topological level, since by (ii) every coisotropic stratum
Sk—# is contained in a unique symplectic stratum (J~'(0) N (T*Q)4))/G. In addition, it
is also compatible with the symplectic geometry of the symplectic stratification, since also
by (ii) each coisotropic stratum has a definite coisotropic character within its ambient sym-
plectic stratum. Finally, the coisotropic stratification is a natural generalization of Satzer’s
result on cotangent bundle reduction at u = 0, since by (iii) each symplectic stratum is al-
most everywhere the cotangent bundle of a quotient manifold equipped with its canonical
symplectic form.

4. SINGULAR CONNECTIONS AND REDUCTION AT TOTALLY ISOTROPIC MOMENTUM

We will consider from now on totally isotropic momentum values, i.e. elements u € g*
which lie in the image of J and satisfy G, = G. There are two main difficulties when trying
to generalize the coisotropic stratification from tt = 0 to totally isotropic momentum values
in the case of cotangent lifted Lie group actions with singularities. The first one is that
unlike in the zero momentum case, the restriction 7: J~!(u) — Q is no longer surjective
and therefore the singular reduced space J ! (u)/G will not be realizable as a stratified fiber
bundle over Q/G. The second problem is more delicate, and is related with the appearance
of twisting terms in the free theory. Since in the presence of singularities the action G x Q —
0 does not define a principal fiber bundle, it is not clear how to define a connection in order
to obtain the twisting term present in the reduced symplectic form.

The first problem was addressed in [21], which studies the topological and fibered struc-
ture of the reduced space J~'(u)/G. The main properties that will be relevant for the
present exposition are collected in the following result.

Proposition 2 ([21]). Let the Lie group G act properly on the manifold Q and on T*Q by
cotangent lifts with associated momentum map given by (1). Let u € g* be a value of J
satisfying G, = G. Then

Q) t(J () = Q*, where
Ot ={zeQ:ue(g)}

Here (g,)° C denotes the annihilator of g, the Lie algebra of the stabilizer of z.
(i1) The partition
0'/G= || Qm/G, (7)
HCG,ueh°
with ) = Lie (H), induces a stratification, called the W-orbit type stratification of
0"/G.

Notice that it follows from (ii) that Q" /G with the p-orbit type stratification is then a
stratified subset of Q/G endowed with the orbit type stratification defined in (4), in the
sense that the canonical inclusion Q* /G — Q/G is a stratified morphism.
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For the second problem we will develop a basic exposition of the theory of singular
connections introduced in [16]. Let the Lie group G act properly on Q and consider the
singular vector bundle p : v — Q defined by

v=J /g
ZEM
We will denote the elements of v as classes (z,[&]), where & € g and p(z,[§]) = z. There is
a natural action of G X v — v covering the G-action on Q, and given by

8- (2,[8]) = (8-, [Ady&]) € p~' (g ).
Notice that this action is well defined since for every 1) € g, we have Adgn € g,...
Next, notice that given a compact subgroup H C G, for every z € Q(y), the stabilizer G,
is conjugate to H in G, and therefore g, belongs to the same adjoint orbit as f in g. This fact,
together with a straightforward application of Palais’ Tube Theorem allows us to conclude

that the restrictions v 0w are smooth subbundles of v.
H

Definition 1. Let the Lie group G act properly on Q. A singular connection for this action
is a continuous surjective bundle map

g TQ—vV
covering the identity, and satisfying
(i) For each compact subgroup H C G the restriction </™ : TQ‘ 0w — v\ ) is a sur-
Jective submersion.
(i) < is G-equivariant: </ (g-v) =g- </ (2), foreveryv e TM, g € G.
(i) Forall & € g, o/ (Ey(2)) = (2, [E]).

It is possible to show that singular connections always exist for proper Lie group actions
as a consequence of the existence of G-invariant partitions of unity. Once chosen a singular
connection on Q and fixing an element 1t € g* satisfying G, = G, for each H C G satisfying
U € bh° we can define a one-form Ocl(lH) on Q) in the following way: if v € T.Q(y) C T:Q
and <7 (v) = (z,[&]), then

o (v) = (1, &).

Notice that o, is well defined precisely when u € h° and G, = G, since if (x,[§']) is a
different representative of <7 (v), then &' = & 4+ Ad,n for some 1 € h. Therefore

(. €") — (ué) = (1, Adgm) = (Ady_p,m) = (u,m) =0.
(H)

Similar arguments show that this form is G-invariant and that it induces a two-form By,
on each p-orbit type stratum of Q" in the following way. Let Ty : Q) — Q(H)/ G be

the group projection. Both Q(xy/G and 7 are smooth manifolds by the exposition in
Section 2. Then define BLH) as the unique two-form on Q /G satisfying

H * H

We are now in a position to generalize Theorem 2 to the case of totally isotropic momentum.

Theorem 3 ([20]). Let the Lie group G act properly on the manifold Q and on T*Q by
cotangent lifts with associated momentum map given by (1), and let L € g* be a value of J
satisfying G, = G. Then the partition

'wic= | Si ®)

HCK,uecte
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where 1
. J ()N (T*Q) ) ﬂT*Q\Qm
Skon = G )

induces a stratification of the reduced space J~' (1) /G satisfying:

(i) If Q" /G is equipped with the W-orbit type stratification (7) then the naturally in-
duced continuous projection

™3 (1)/G— 0" /G
is a stratified fibration, satisfying T™ (S ) = Qx)/G, for any pair H C K with
JINSH o
) If H C K and u € €, then Sllé _,y IS a coisotropic submanifold of
_ » H
(I (1) N (T* Q) 1) /G, o)

(iii) In particular, if H =K and L € h° then SZ g is an open and dense symplectic sub-

manifold of (J~' (1) N (T*Q)))/G. "

* H * .
Q4 /G — T(H)BL >), where Ty : T*(Qr)/G) — Qn)/ G is the cotangent bundle
projection.
The stratification induced by (6) is called the coisotropic stratification of J~' (1) /G, and
the manifolds SI% _,y the coisotropic strata.

), symplectomorphic to (T*(Q(x)/G),

Similar comments to those following Theorem 2 about the adequacy of the coisotropic
stratification and its compatibility with all the geometric structures present in the problem
also apply to the case of non-zero totally isotropic momentum.

5. FINAL REMARKS

We conclude this article with some thoughts about the current status of the program
of singular cotangent bundle reduction. For general proper actions G x Q — Q, the only
results existing so far correspond to the cases p = 0 ([18]), G, = G ([20]) and the Sternberg
picture of the singular Poisson reduced space ([17]). For the cases of the embedding picture
at general u, and the Weinstein and Sternberg realizations of the singular Poisson reduced
space, at this moment there are only partial results corresponding to particular cases of Lie
group actions on Q presenting only one orbit type. These results were obtained respectively
in [14], [7] and [16]. One of the main objectives of the program of singular cotangent
bundle reduction consists precisely in obtaining descriptions of the various reduced spaces
involved in these cases for general proper actions.

Another important topic not discussed here is the study of the local properties of the
resulting stratified reduced spaces. For the case of proper Hamiltonian Lie group actions
on general symplectic manifolds, it is proved in [24] that the reduced space J~'(0)/G,
equipped with the symplectic stratification is an example of a locally trivial conical Whitney
space. This has been later generalized to arbitrary momentum values in [3] and [15]. The
main tool employed to this end is the local model for the neighborhood of a group orbit
of a Hamiltonian action given by the Hamiltonian tube theorem of Marle, Guillemin and
Sternberg ([6] and [10]). This local part of the theory has not been so far successfully
applied to singular cotangent bundle reduction, and to determine if the new coisotropic
stratifications enjoy the same local properties as the symplectic one, is still an open problem.
The main reason for this is that the construction of the Hamiltonian tube is not fine enough to
take into account the fibered structure present in the case of a cotangent lifted Hamiltonian
action. In [23] a Hamiltonian tube specially adapted to cotangent lifted actions has been
obtained for some particular types of orbits, but the general case is still unsolved. This is the
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main obstacle preventing the study of the local properties of the coisotropic stratifications
of Theorems 2 and 3.
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