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INTRODUCTION. Frobenius' Theorem establishes, roughly speaking,
that a given sub-bundle of the tangent bundle to a given
manifold is integrable if and only if for every pair of vector
fields tangent to the sub-bundle, their Lie bracket 1s also
tangent to the sub-bundle. This basic statement has bheen
proved in different situations for finite or infinite
dimensional manifolds.Each case assumes some kind of regularity
condition on the sub-bundle (distribution) and the manifold
{See [17,[5],[81,091,[101,[121,[15))).There are various methods
of proof (See [6 ] ,[13] and previous references) of the
existence of a local integral manifold. Then existence of global
integrals is usually established by some extension
procedure. (See [20]). However this kind of global problem is
beyond the scope of the present article.

In this paper we concentrate on a case of the local existence
theory where (some of) the involved spaces are normed spaces, not
necessarily complete and the hypothesis on regularity conditions
on the distribution are expressed in terms of certain
restrictions of the later to 2Z-dimensional subespaces. It is
precisely because of this particular choice of the hypothesis,
that our Theorem 1 generalizes known results on Potential
Operators (See [16],[17]) as explained in a 2.We show that the
usual integrability conditions in terms of Lie brackets of vector
fields becomes,in the particular case of potential operators, the
usual self-adjointness condition for existence of a potential. An
interesting example of this is the inverse problem in the
calculus of variations (See [14],[2],[18]) since the later can be
aproached using potential operators theory, as shown in [14].

As a consequence of Theorem 2 , we can define (locally) a
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2-form « which vanishes if and only if the integrability
condition holds. This is related to the curvature 2-form R as
defined in [7]. We show an example in the context of
nonholonomic constraints. See also [4] for related topics.
Another example is provided by Caratheodory's inaccesibility
theorem of thermodynamics. Those examples are of course not new
in themselves, but the interpratations seems to Lie new.

Finally let us sketch how the basic idea of holonocmy is used
tc prove Theorems 1 and 2, letting aside for the moment the
required differentiability conditions. Let E:HxG - L{H,G) be a
map where H,G are linear spaces and L(H,G) is the space of linear
maps from H into G. For each (x,y)eBXG ~(x,v)=(x,y)+Graph E(x,y)
is a linear affine subespace of HXG . Thus » is a distribution.
Given a curve g(t) on H a lifting of ¢ with origin Yo € G is a

dy(t)
curve yg(t,yo)zy(t) such that P = FE{g(t),y(t)) and y(O)zyO.

The distribution = is integrable provided that for any given
curves g,q’' s.t. q(O):q'(O}:xo g7(1)=g'(1}) and any Yo ¢ G, we
have yg(l,y0)=yq,(1,y0). Then we can define, S(x):yq(l,xo), where
x=g({1). "Then the graph of y=S(x) becomes the integral manifold
of =~ that contains (xa,yo). Our method of proof shows that
inuependence of S(x):yq(l,ya) of the curve g s.t. q(O)?xO ,
7(1)=x is a consequence of the integrability condition

w{x,y;,(h, k)=DE(x,y)(s,E(x,y).h).k - DE(x,y)(k,E(x,y).k). h = 0
Let ¥ be the boundary of the rectangle having vertices Xp Xgth,
x0+h+k ; Xptk. It is shown in Theorem 2 that }3(1,y0)—y0 and
w(xa,yo)(h,k) coincide up to order tAh!!'k! (where | | is some
norm on H ) for {hi,!k’ - 0 . Thus « measures the
"non-integrability"” of the distribution.

53



% 1.- Let H be a normed vector space and let G be a Banach
space.Norms will be denoted "! | " in this paper.Let U = H be an
open ball centered at Xg € H.For each choice of a couple of unit
linearly independent vectors a,b ¢ H,we define

H = <Xa + u«b.: Z,u ¢ R} , Uv' = Xg *+ 'L

For given ¢,8 >0 we write
R ={ xp+#ra +ub :(x ,u) ¢ [0,a] x [0,2])

We always assume R < U . Thus shrinking 7 implies shrinking #F .
Let E :UXGXH ~ G be given . For each choice of ' . X5, a0, Hoas
before, we define Lipschitz L and integrability 'I) conditions

as follows

(LY E(x,y).h continucus for {(x,y,h) ¢ U''XGXH' and linear in h.

E{x,y).h is k-Lipschitz in y in the following sense. Therr exists
k=k(U’) such that
\E(x,y).h-E(x,y' ). b = kiy-y' for all x (' , h=1; y, " G

Now we define DE: UXGXHXGXH - G as follows

d
DE(x,y).(h,k).]l = = E{x+sh,v+sk).1
ds' 5=0

It is 1important to notice that this notion of derivative 1is
weaker than that of Frechet derivative. It is usually called

Gateaux derivative.
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(1)DE(x,y).(h,E(x,y).h).1 is continuous for (x,y,h,1)é ['"“GXH'XH'
and

DE(x,y)(h,E(x,y).h).1 = DE(x,y)(1,E(x,y).1).k
for (x,y.h,1) € U’XGXH'XH'

Finally, fix Yo ¢ G . Then, under the previous conditions we have

Theorem 1 There exists one and only cne 2:U - & such that
DS(x).h = E{x,S8({x)).k& for all (x,h) ¢ UxH
S(XO) = ¥
d i . v .
Here DS(x).h = ——S(X+Ah)] ,by definition
dai Az=0

Remark: a: Using Zorn's lemma, we can always define an inner
product norm on a given vector space H . In examples K is given
to us and -we have some freedom to choose the norm so as to
satisfy (L),(I).

b) Replace the Lipschitz condition in (L) by the following:
there exist balls UEH , G about X9,¥Yp and a constant k such
that !E{x,y).h - E(x,y').hl < X'y - y'l for all xcU , y,y'cV,
heH , [hi£1. Then the conclusions of theorems 1 and 2 subsist,
with a possibly smaller U.

¢) Replace the Lipschitz condition in (L) by the following. Let



XOEH, deG be given. Let U:H be a ball centered at Xp- Let H',
U'=(x0+H’)ﬂU as before. Assume that for each ball PG centered at
Yo there is a constant k=k(U’,B) such that

. |E(x,y).h - E(x,y"').n! < kly - v".
for all xeU' , |hlZ1 , y,y'éB
Then the conclusion of Theorem 1 subsists in a weaker form,namely
the domain of S is a star-shaped subset W of H about x,. Moreover
W has the following property: for each H' as before, (x0+H'M7W is
a bidimensional ball centered at xj,.
The conclusion of Theorem 2 subsists.

To prove this theorem we need some previcus lemmas.

L . 2
For each n = 1,2,3... we have an n-partition of R into n® smaller
. ly "q ¥ .
rectangles whose sides have lenght -~ , = . We will work with
n n
piecewise-linear maps g : [0,0+8] - R parametrized by arc-lensht,

each linear piece being parallel tco either a4 ~r b and having
53 =3

length -~ or — respectively and coinciding with one gide of some
n n

rectangle of the n-partition of R. We also assume that the length

of ¢ is «++& and q(@)zxo , q(n+5):x0+aa+ﬁb . We denote by Qn the

set of such g’s . Any q ¢ Qn {and more generally any piecewise

linear curve) will be represented by the sequence of its vertices
as follows

gE{QO,ql,...qgn} ., where 9o Xp q2n=x0+aa+£b

@©
We set Q= Ulon. Given q ¢ 2, » we can write the differential
n=

equation and initial condition problem
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E(q(t),y(t)).q(t)
Yo (1)

¥y (t)
vy (0)

On each linear piece the differential equation has unique solu-
tion (as a consequence of the Lipschitz condition in y) and by
glueing pieces together we get a unique continuous y(t) .
te[0,x+8) called the "lifting of the curve g with origin yo"
denoted yq(t,yo) or sometimes simply yq(t). Given two curves
Ciz[al , b1] - 2, CZ:[bl , b2] - Z where Z is a given space,such
that Cl(bi) = CZ(bl) we can form the sum CI+C2: [al , b2] ~Z as
follows : (Cy+Cy)(t) = Cy(t) if te (a;, byl and (Cy+C,)(t) =Cy(t)
1f ¢ ¢ [bl , bZ] .We can also define —Cj(t)=61(a[+bj—t). Thus a
piecewise linear curve say g = {ql,qz,q3,...} equals the sum of
its linear pieces , namely g = [ql , q2]+[q2 , q3]+... For 1lif-

tings, we obviously have y (..¥pl=y (.,vglty (.,¥v (by,75))
Cq+Cy Cq C, Cy

By definition (See [5] pag 116) an ¢ -approximate solution to a

differential equation y'=f(t,y) where f : U~ F , Uopen in R x F

F a Banach space,is a differentiable map » : I - F,where I < R is
an ¢pen interval such that for te I we have

(1) (t,»(t)} ¢ U

(ii) fe'(t) - f(t,e(t))] = €

Lemma 1.Let v; :I -~ F be (i—approximate solutions of the equation
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y' = f(t,y) for i=1,2 .Let x; = wi(to) the initial values for «.,
i=1,2. Then if f is k-Lipschitz in y and continuous in (t,y)cU we
have for t € I the following

kit-tyl

loq(t) - wy(t)] = [x; - x5le + (€446 5) p

Proof:See [5] pag 116.

Let U’ be as before and choose Yo € G. By shrinking U’ if
necessary and using continuity assumption (L) , for some ¢>0 we
can find a ball Br(yo) centered at Yo € G and having radius r>0

such that |E(C(t),y).C(t)) < for all piecewise linear curve
C:[t1 , t2] - U' parametrized with arc lenght and all y ¢ Br(yo).
Then the constant function w(t)zy'o is an € -approximate solution

to (1) for each fixed y'o € Br(yo) (See Lemma 1 ). There exists
ekt-l
L>0 such that ¢

r
)< 3 for all t ¢ [0 , L}, where k is the

Lipschitz constant appearing in (L). Choose y'o € Br(YO)'

2

Since yc(t,y'o) is the exact (0O-approximate) solution to (1) with

. 13 . . . r
initial dapa y’o, using Lemma 1 we obtain IyC(t,y'o) - y’0l< }

for all t ¢ [0 ., L]. In particular y.(t,y'p) € B.(y,) for all
t¢ [0 , L].Using this we can show that given r>0 we can shrink
REU' 80 as to satisfy the following for some fixed Yo € G

lyq(t,yo) ~yp! 1 for all te[0 , a+8], q€Q , y, €G
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Let V & G be an open ball centered at y, ¢ G .

In the following lemmas, Xp, Yoo H', will remain fixed while U,
R, V, will be eventually shrinked so as to satisfy certain
conditions. Using our continuity assumptions (I),(L) and
shrinking U,V 1if necessary, we can assume that E(x,y).h and
DE(x,y).(h,E(x,y).h).1 are bounded for (x,y) U'XV and h,l ¢H'

bounded. Besides we shall assume that the closure K of the set

K= { yq(t,yo) g€ Q, te [0, a+B]} satisfies R ¢ V. This can
be achieved using the continuity and Lipschitz conditions (L),
and the observation before Lemma 1. .

A number of bounds, either constants 1like C,D,etc.,or functions
like €,€,,etc., will appear along the line in the following
lemmas. It is understood that they may depend on the choice of
U,V,R,yo, X, but apart of this, they are fixed.

Lemma 2 : Let u,v ¢ R, v=u+h, 0, w<¢ V. Set T%T = X and let

y(t,w) be the solution of

E(u+tr , y(t)).Xx

K
1]

y(0)

1l
T

Let
t2
wi{t,w) = w + tE(u,w).x + ErDE(u,w)(x,E(u,w).x).x

a) Then there is a continuous function € (t,x,u,w) >0 such that
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ly(t.w) - w(t,w)i = €(t,x,u,w)t? for all Osts|h|, uéR,weV .
In pavticular ¢ is bounded provided that U,V are small.

b) Moreover if w varies on a compact set K S V, then there is a
continuocus fuﬁction € (t) such that ¢(t)-0 as t-0 and ¢ (t,x,u,w) <
€(t) for all te{O , {hl), uéR , wVv .

Proof: a) The Taylor's expansion of the solution y{t)=y(t,Xx,u,v)

is yi(t) = e(t) + tZZ(t,x,u,w).Let A(u,v,x) =DE(u,v)(x,E(u,v).x).x
Then the integral form of the remainder gives the following

1
E(t,x,u,w) = I JO(l—S)[A(’u-ftsk ,v(ts),x) - Af{u,w,x)]ds

Our continuity assumptions imply that ¢ is continuous, and there-
fore it is bounded provided that U,V are smaill.
b) It follows from the previous formula that ¢ (t,x,u,w)~0 as t-0

for each (x,u,w) . Since (x,u,w)é SlXRXK which 1is compact we can

find ¢ (t) having the required properties. |

Let u¢ R, welV and for each positive integer n let B=u+%a ,C%u+%b,

D=u+%a +ﬁb such that u,B,C,D are vertices of a subrectangle

contained in R. Set » = {A,B,D} , »’' = {A,C,D}, piecewise linear
maps parametrized by arc lenght.

set yp = v, (% . w) ,  vp=r,(%% W), vo = v, (5, W o,

Y'D = y,.ﬂ%+% , W).We want to estimate the difference lyD - y'Dé.
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1
Lemma 3: a) There is a constant C such that |y, - y'sl < C
. D b2

b) Assume that w happens to vary on a compact set K © 6 and

condition (I) is satisfied. Then for some D(%), D(%)~0 as n-o

we have iyb - y’D] < D(%) i7 .

Proof: a) Using the previous lemma with v=B , h=%a , toie, 1ra we

obtain,

A

Yg - W = %E(u,w).a +(%)3.% DE(u,w)(a,E(u,w).a).a +(‘3,a,u,W}f%)‘
{1)

Using the previous lemma again with »=B , vD , WYg hiéb ,
n

, X =b we obtain,

M
5w

Yp-Yp = %-E(B,yg) . b+ (%)% LDB(E.yy) (b,E(B,yg).b).bec (4,b,B,v5) (47

(2)

We replace B,yB from (1) on the second side of (2) and using the
continuity of K and DE we obtain, after some rearrangements,
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1 ,
Yp~Yg = %—E(u,w}.b+ﬂ%)2 é DE(u,w)(b,E(u,w).b).b + € (§,u,w) i? +

alf
+ DE(u,w)(a,E(u,w).a).b (3)
n

Where €4 is continuous and therefore bounded if U,V are small. In

a similar manner we can prove the following

vew = §-E(uw). b+ (§)% 4 DE(u,w) (b, E(u,w).b).bre (§,b,uw) (§)2

(4)

and

Yh-Ye = %—E(u,w).a+(%)‘-é DE(u,w)(a,E(u,w).a).a+€z(%,u,w) ir +

al8
+ — DE(u,w)(b,E(u,w).b).a (5)
n

Using (1),(3),(4) and (5) we can calculate ¥p - yb as follows
YéayD = ﬂg [DE(u,w}(b,E(u,w).b).a -~ DE(u,w)(a,E(u,w).a).b ] +
n
+.«(-,13,u,W)17 (6)
n

where « is continuous and therefore bounded if U,V are small.
From this the proof of part a) follows easily

b) Note that, for each (u,w) ¢ R X V we have ﬂ(%,u,w)~o as n-wo,
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Since (u,w) € RxK compact, we can find D(%) > ﬂ(%,U,W) and

D(%)~0 as n-o , satisfying the required condition.

Let q,q' ¢ Qn . They are contiguous if and only if they differ by
one vertex only namely qg=p+7+s ,qg’'=p+7’'+s where p={q1,...qk_1}
7={qk-1’qk’qk+1}’ 7'={Qk_1;Q§zqk+1}: s ={qk+11»~-92n}-

Let t1=1enght p ., tyty = %+% =lenght 7» = lenght + ’'.Choose tFt,
t3-t2 £ lenght s.

Set wy = yp(ty,¥g) . Wy = Yy(tyty,wy) , Wy = yyulty-ty,wy)

Wa = Ys(t3“t2'wz) = Yq(t3;Y0)z Wé = Ys(t3't2;Wé) = Yq'(t3zYo)

Lemma 4: There is a constant Cﬁ such that fw3 - wé: < Cl

5

1
Proof ; Using Lemma 3,a) we have !wz - wéi <C = . Then applying
n
Lemma 1 to the exact solutions ys(t,w?) , ys(t,wé) with different
initial data Wo, W) We get

. ., K(tz=tsy)

Iwg — w3l = lwy - wjl e

Since ty .ty £ a+f , we obtain
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Let c; /€y :la, bl - 2, c1.Cy continuous , Z a metric space. We
define as usual

d(cl,cz) = sup d(cl(t) ,cZ(t))
Lemma 5: There is a constant CZ such that if gq, q' ¢ Qn satisfy
d(g,q') <6 and gq(t) = gq'(t) for some t = Z then
¥q(t.vp) = vgr(t.ygll < Cp0
roof: An elementary reasoning will show that there is a constant
say F, such that the number of rectangles of the n-partition of R

which lie "in between" the restrictions gql|[0 ,E]Eq ,q'ii0,ti=qg'is

less or equal than Fsn‘ . This means that there is a sequence of

at most N < E&nzelements 1 q2 qN gt, gt
qQ.,q9°,.... € Qn such that g, g are

contiguous for i=i,...N-1 , qlsq , qNEq' and qi(z) = g(t) for

i=1,...N . VUsing Lemma 4 repeatedly with t=t, we can easily show
that Cp = C4F satisfies the requirement of the lemma.

Lemmz 6: There is a constant C2 such that for gq,g' ¢ Q we have

d(g,gq') <& implies d(yq,yq,) < C36
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Proof: Let ty ¢ [0, ¢+J3]. An elementary reasoning shows that we
can find piecewise linear maps £,7 :[to , to+A] - R satisfying
the following ccnditions, where Fq i€ an appropriate constant

i) 5(t0+4) = ”(t0+ﬁ) y 5(to) = Q(to) p n(tU) = Q'(to)
4 = lenght € = lenght n < Fq8

ii) Each linear piece of ¢ and 7 is contained in one s:de «f

some rectangle of the n-partition of R.

Let p"qltozto} + £, 7= q'lfoftgj

-+

n .Then pltots) = I'ftg+s)

Then we can apply the previous lemma with t = tgtd and we obtairn

fy (¢t ) oyt H o
.Yp(»;YO/ ‘p(v/YO/. < Loy

Using Lemma 1 (or more directly, the uniform Lipschitz condition
on y) we can find a constant, say le such that
Yplto Yol-Yp(t,vpl)l 1 ¥p(te,yo)-yp(t.yp). < F2. From this

and the previous inequality we finally obtain

!Yq(tO’YO) - qu(tOIYO}E < (ZFZ + Cz)ﬁ E ng

Lemma 7: The set K = { yq{t,yo) pogeg , te [0, 0+3]> is

relatively compact as a subset of &

Proof: The family (of continuous functions from [0 , «+2] into R)
Q is totally bounded as a consequence of Arzela's theorem. Then
using the previous lemma, we can show that {yq}q €0 is totally
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bounded as well. Finally, the evaluation map
(vq.t) = yq(t)

can be continuously extended to the closure of its domain which
is compact. Since K is contained in the 1image of this extended
map, it 1s relatively compact.

Lemma 8: Let the same situation as in Lemma 4, and assume that

condition (I) is satisfied. Then there is a function v(%) such

that w(%) - 0 as n~ @« and !w3 - Wéi < V(%)-ly
n

Proof: Using Lemma 7, we can show that wl,wz,wé,w3,wé all vary on
a compact set K. Therefore using Lemma 3 b) we see that Iwz - wé!

< DL%) %7 .Argueing like in the last part of the proof of Lemma 4
£l

we cah show that

(wy - wil = lwy = wyl eXK(¥#8) < Gkl(atd) pil, .11;2 = "(zl:) ;17.2 .

Proof of the theorem 1 : Let q5q1,q2 ..... q”sq’, where anz is
a sequence of elements of Q, such that qi,qi+1 are contiguous for
I=1,...N-1 and q lies in the sum of the two edges [xo , xo+aa]+
[x0+aa , Xgtaa+8b] of R while g’ lies in the sum of the remaining
edges [xo , x0+ﬂb] + [x0+ﬂb , x0+aa+£b]. Using the previous lemma
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we have

|Yglat8)=yqi(at8)| = |y 1(048) - Yqz(a+zf)i+!yq2(a+z?) - Yq_;(«w?m

i,

"””Y@Hﬂww)"’%JMﬂ” ‘V%)

Since yﬁé) - 0 as n -~ » we obtain yq(a+5 , yo) = yq.(a+3 , yo)

Now we define the map S appearing in the statement of the
theorem.For this,given R as before,define Sp: R+ Gas follows
For any Xgrdatub=x ¢ R,let gq = {xo,x0+Aa,x} , qQ'=s {xo,xo+ub,x} be
piecewise linear maps ( having two linear pieces each ) contained
in R.So far we have proved the fcllowing.Let Xg € U',U'z(x0+H')FU
Yof G and assume that (I),{(L) are satisfied.Then there exist o,2 0
and REH{XO,a,b,a,B) £ I'7 as before such that, for each x=xofka+ﬂb
¢ R we have

yqu+ﬂ » Yol T yq,{3+ﬂ,y0)

where q={x0, Xpgtda ,x} q’:{xo ,X0+ﬂb, X}

Define Sp: R -G by Sﬁ(xl = yq(4+ﬂ , yaj = yq,(A+u,y03 Tt
follows that
IS (X)) 28p(x)
£ - E(X,SR(x))-a ’ —B - E(x, S 'x''.b
aA Ve

Consequently SH is of differentiability class CI and therefore
for every Cj curve x(s/) = Xp * Ai{sia + w{s})b ¢ R we have
;;SR(X(S)) = E{x(s) , SR(X(SJJ).Q(SJ.In particular for x s -x+sh

we obtain
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d
ds 's=0

This implies that for any piecewise—Cl curve 2(s) on R such that

Sﬁ(x+sh) = Fix , Sﬁ(xl}.b

7(0) = Xp we have
y,(s , yg) = Sp(v(s))
We can obviously find a finite family of rectangles

R;=R(xp,a;,b;,a;,8;) a:;,b: ¢ H' such that their union covers a

i7%i
ball centered at Xg » say D(xo)QU’ . By glueing the SH together
I
we can find § :D{xo) - ¢ satisfying the Frobenius

differential equation and initial condition

bs (x).h = E¢x , S (x)).h
D(Xo) D(XO,)

S (Xp) = ¥
D (” X 0,-) 0 0

for all x(ﬂ(xoj , he H’

Next we shall extend § to a map SU,:U’ - ¢ satisfying the
D(xo)
same differential equation and initial condition for xe¢l’ . Let
U=y be the ball of radius rp and center Xp. Let U'r=Uy?(H'+x0)
To
be the ball having the center Xy and radius r<r, in the space

(H’+x0), and let U'r be its closure. Assume that SD( ) has an
c X
0

extension SU’ :U’r - G satisfying the required
r

conditions for some r. Using the Lipschitz condition we can show

that SU’ has a continuous extension S§ to the closure U'r

Ir P
U r
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4 ’ y e rv? ) \ N VAR B
For each «x g € 207, find 2(x g/ and bp(v’o}.nrx 0 G

satisfying the Frobenius differential equation and the initial

condition: § . (X'O) = 8 (x’O} . By compactness of AU’ _ we
Di¢x ’0,} - !

can find a finite number of such D(x'OJ, covering ﬁU'r and

glueing all the corresponding S and § together
D (X ,0,;) o’
r
find an extension § , for some § 0. From this we coan easily
v r+d
conclude that there is an exteusion Sp» where U’=UWKXO+H') with

the criginally given U.

, we

Finally let H’,H’’SH be given bidimensional subespaces and let
U’= (x0+H’)ﬂU , U°’= (x0+ﬁ”)ﬂ0. Let x¢ U’NU’’and C(s):x0+s(x-x0'
Then yc(s,yo) = SU,(C{s)) = Spe(Cis)). This shows that we can
coherently define $:0 - ¢ using its restrictions to each ' -
(x0+H’)ﬂU where H’ is an arbitrary bidimensional subespace of A,
namely S|I’ = Spyre

|

With the notation introduced in the previous theorem,we have as a
corollary the following result:

Theorem 2.For each n,let 2(t) be the boundary of the subrectangle

R parametrized with arc length t ¢ [0 , 2 £%£ ],such that

7(0) = #(2 z%é) = Xp , 7(%) = x0+%a , 7(5§£)= xo+%a#%b
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7(2 % +»%) = x0+%b
" Define

v,(2(%5 + %) .vp) ¥, (0,v,)

v(xpg,¥g)(a,b) = gfg —
n?
Set y,=y,(0) . Then we have
w(Xg,¥g)la,b) =

[0B(x9.¥0) (2, E(xy vp).2).b - DE(X(,¥0) (b,E(xg,7p).b).a]

Proof: The result follows directly from formula (6).
Notice that the denominator in the above limit is just the ares

of the subrectangle A.
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¢ 2.- APPLICATIONS

A) Potential operators

As stated in the Introduction, Theorem 1 generalizes in some
sense, known results on potential operators (See [1631,[171).
We shall briefly comment on those results, using our own
notation, for convenience. Let H be a Banach space., g its dual
and let E:H - K be an operator. Assume that : 1) £ has a linear
Gateaux differential DE(x).h at every point x of a ball B
centered at 0 ¢ H. 2) The functional DE(x).h.k is continuous in
X ¢ H'NB for each choice of a bidimensional subespace F'c H ,
‘b,k €H'. Then in order for the operator E to be potential in
the ball B (i.e. for existence of S(x) s.t. DS(x).h=E(x).h , for
X¢B , héH ) it is necessary and sufficient that the bilinear
functional DE(x).h.k be symmetric 1i.e. DE(x).h.k = DE(x).k.h.
(This is essentially the content of [(16], Thm 5.1 and footnote).
The later becomes a particular case of our Theorem 1 by taking
the Banach space &R and also E(x,y)E(x), independent of ye R
(this in turn implies that the Lipschitz condition is
automatically satisfied). The nice fact that the Frobenius
integrability condition w=0 in case £ is independent of y ,
reduces to the typical symmetry (or self-adjointness) condition
in potential theory is easily verified.
On the other hand, a result similar to Thm. 5.1 of [16] is
proved in [17] (See Thm 6.3) using hypothesis involving the
notion of "hemicontinuity” rather than "continuity" of the
relevant operators. We could also provide a generalization of
this result using a suitable generalization of the notion of
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hemicontinuity. Thus let us say (as a provisional, ad-hoc
notation only) that DE(x,y).(a,E(x,y).b) is hemicontinuous on
(x,y,a,b) € RXGXHXH' if for each choice of x,,x; ¢ R the function
DE(x0+t(x1—xo),y).(a,E(x0+t(x1—x0),y).b is continuous for
(t,y,a,b) € [0,1I1XCGXHXH'. Similary E(x,y).h is hemicontinuous
on RXGXH' if E(x0+t(x1—x0),y).b is continuous on (t,y,h) ¢
[0,1]1XGXH'. We can show that Theorem 1 remains valid after we
restate it by replacing continuous Dby hemicontinuous.

It is also interesting that potential operator theory has been
related to the inverse problem in the calculus of variations (see
[14],[18], and references therein, specially, Tonti) This is done
as follows. Let ﬂ be the vector space of c® curves q:[tl,tZJ -~ RO
such that g(ti)zqi, fixed for i=1,2. (To see the vector space
structure just replace each g by g-#, where #(t) is a suitable
fixed linear function of t such that (q-¢)(ti)=0. Thus # is the
null vector of H,etc.). Besides we can choose the usual ! norm
in H). Let L: ™™ -~ R® be a given Lagrangian of differentiability

Lo

class ¢° . The Euler-Lagrange operator is by definition

tzéL . d JdL .
EB(L)(q).h= —{(q,q) - — —(q,q)|.h dt where g, heH.
q

This is an example of the situation described inll, where [EH,
GR x=q and E(q,y).h = E(L)(q).h is independent of y. The
inverse problem in the calculus of variations consists in finding
necessary and sufficient conditions to ensure existence of L s.t.

t .. .
for a given E(q).h= ftz [A(g,q)d + B(q,q)].h dt
1
E(L)(q).h = E(q).h . The usual self-adjointness condition in the

calculus of variations (usually written in terms of A,B and their
partial derivatives) coincides, as observed by Tonti, with the
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symmetry condition of the operator Z.

B) Caratheodory Inaccessibility Theorem

A nice application of the curvature « is a geometrically inspired
short proof of Caratheodory's inaccesibility theorem of
Thermodynamics. Let us state the following version of this
theorem (See [19]) for convenience.

Let M be a smooth n-manifold and REL'(M) a nonwhere vanishing
l1-form. Then the following are equivalent

(i) Q=0 is an integrable Pfaffian system, i.e. locally Q=Tds

(ii) For each Xp €M there exist an open neighborhood V of Xy
on M such that each neighborhood W of Xg, WeV contains a
point xéW that cannot be connected to Xp by a (piecewise
smooth ) quasi-static adiabatic path.

Here Q is the heat delivered by the system and M is the phase

space. For a given curve 7»(t) on M , the condition Q(&(t)) =0
means that 7 is a quasi-static adiabatic path.

We illustrate our method of pProof by showing that ii)=i)

First chosse a local chart at mofM'such that the neighborhood vcM
is of type ¥=RP™IXR and there is a function £:R" IxR - R such

that Q(x,y)(x,y)=0 iff y=f(x,y).x

In other words, the distribution defined by Q=0 is locally
described by f. Now assume w(xa,yo)(a,b) = 0 for some
(xa,yo) e R 1xp and a,b erD1, Let »(t) be the boundary of a
rectangle R , as in theorem 2, and let n in that theorem take
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real values. It can be shown by an elementary argument that as n
' a+8 ) '
varies, y,(———) takes on every value on a certain interval ,say
n

{yo-a , y0+6).about YR . This is done by using the fact that

ad Ab al
”(XO’YO)ﬁz-A’ ;;) = ;;? w(xo,yo)(a,b) varies on ( -6 , 4) and

a+8

aa Bb
the fact that w(xo,yo)(-—,——) differ from yy( )-yo by a
n £

n

higher order quantity. Thus every point in that interval is
accessible. From this it follows also by an elementary argument
that the union of all liftings yc(t,yj) of linear curves
c(t):xo+tv y lvi=1 with origin yC(O,y1)5y1 € (y0~6 , y0+5), fill
a whole neighborhood of (xa,yo)GRnXR . Thus every point in that
neighborhood is accesible. From this and 7ii) it follows that

w(x,y)=0 for all (x,y)éR® . Then f is integrable according to
theorem 1. From this, existence of the integrating factor ;

( where T is the absolute temperature) follows by standard
arguments.

The proof i) = ii) is easier and will be omited

C) » as a curvature form

The 2-form « can be related t6 the curvature R defined in 4.41 of
[7] as follows. Let H,G be Banach spaces and LtH , V&G open sets.
Let Ir:UXV ~ L(H,G) be C”. Define the horizontal and vertical
projectors as follows
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Iy O 0 o0
-r 0 rooIg

where I, , I, are the identity maps of H,G. Then n?=h , =v,
V*h=IH4G hov=0 , wvoh=0 . A vector x€HXG is vertical iff vx=x
and it is horizontal iff hx=x. Let x,y HXG. Define
R(x,y)=-lhx , hy] + [hx , vyl + hlx , hyl - hl{x , Y]
It can be easily shown that R is a tensor field i.e, it 1is
R-linear in x,y and for any given feC"(UXV) we have
R(fx,y)=fR(x,y) , R(x,fy)=fR(x,y) . Moreover we can show that
R(x,y)=0 if x or y is vertical. We can also show that for x=a+a’
y=b+b '€ HXG we have
w(a,b) = R(x,7)
This follows from the expression
[U,V] =DV.U-DU.V and the formula for o
given in Theorem 2, by a straightfoward calculation.

D) Constrained Lagrangian Systems

Let us assume for simplicity dim H = n, dim G = m, E of class CJ.
Let L :T(U x G) - R be a given Lagrangian and let us interpret F£
as a (time .independent) constraint (See [4]). A system is called
holonomic or non-holonomic according to whether the imposed cons-
traints are integrable or not.

A curve P(t) = (q(t),y(t)) ¢ UX G is compatible with the cons-

traint E if y(t) = B(q(t),y(t)).q(t) (i.e. if y(t) is the lifting
of g(t)} with y(to) = yo.for some y,). Choose variations

-
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P(t,A) = (q(t,») , y(t,2)) such that for each fixed t, y(t,A) is
the lifting of g(t,A) with initial condition y(t), and

q(t;,») = q(t;) , i=0,1 , y(tg,d) = yg , ¥(ty,A) = y; are fixed.
Remark. A different kind of variations is also interesting.

Namely (q(t,A),;(t,A)), where for each 1 , ;(t,A) is the lifting
. of g(t,x) with fixed origin Yo - Thus in general

Y(tg,2) = y(ty,0) = y(t,a).

2P
Each vector =5 = &P ¢ TP(t)UKG compatible with the constraint is

called a virtual velocity,and D'Alambert-Lagrange Principle
establishes that P(t) is a motion if and only if it is a critical
point of

t .
¢2(P) = j.tlL(P(t),P(t)) dt
0

with respect to variations 6P of P compatible with the
constraints (virtual displacements). This is equivalent to

aL d aL 2L d 2L
¢q dt _. sy dt .
2q oy

y = Blq , ¥).q

for all e#g such that sqft;) = 0,i=0,1.
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It is well known that for holonomic constraints we can simply
restrict L to the integral manifold of E,obtaining an equivalent
restricted unconstrained system . This is in turn equivalent to
finding curves (q(t),y(t)) such that

0 = — I L_(q(tlz)Iy(tla)I—(tIA)IE(q(tIA)IY(tI)))'—'—(tl/‘))dt
dAa to at at

The later is no longer true for non-holonomic constraints.However
by using our two-form « and expanding the previous equality we
get the following formula (in case the distribution E£ is
independent of y)

2L d L L d 2L £.s 2L (. )

J o o c— é‘q + — T e e— 0 = - e— w qg 6q

ag dt . dy dt . . ’
aq iy 2y

Thus restriction of the Lagrangian to a nonholonomic constraint
is equivalent to adding an external force.If n=2,m=1 then w({gq,.)

[
looks like a Coriolis force with "angular velocity" 3 .
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